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1. Preface 

TEACHING CHILDREN TO BE MATHEMATICIANS 
VS. TEACHING ABOUT MATHEMATICS 

by 

Seymour Papert 

Bei ng a mathemati ci an is no more defi nab 1 e as "know; ngll a set 
of mathematical facts than being a poet is definable as knowing a set 
of linguistic facts. Some modern math ed reformers will give this 
statement a too easy assent with the comment: liVes, they must under
stand, not merely know. 1I But this misses the capital point that being 
a mathematician, again like being a poet, or a composer or an engineer, 
means doing, rather than knowing or understanding. This essay is an 
attempt to explore some ways in which one might be able to put children 
in a better position to do mathematics rather than merely to learn 
about it. 

The plan of the essay is to develop some examples of new kinds 
of mathemat.i ca 1 acti vi ty for chi 1 dren, and then to di scuss the general 
issues alluded to in the preceding paragraph. Without the examples, 
abstract statements about IIdoing·,1I IIknowing,1I and lIunderstanding" 
mathematics cannot be expected to have more than a suggestive meaning. 
On the other hand the description of the examples will be easier to 
follow if the reader has a prior idea of their intention. And so I 
shall first sketch, very impressionistically, my position on some of 
the major issues. In doing so I shall exploit the dialectical device 
employed in the previous paragraph to obtain a little more precision 
of statement by explicitly excluding the most likely misinterpretation. 

It is generally assumed in our society that every child should, 
and can, have experience of creative work in language and plastic arts. 
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It is equally generally assumed that very few people can work creatively 

in mathematics. I believe that there has been an unwitting conspiracy 
of psychologists and mathematicians in maintaining this assumption. The 
psychologists contribute to it out of genuine ignorance of what creative 
mathematical work might be like. The mathematicians, very often, do so 
out of elitism, in the form of a deep conviction that mathematical 
creativity is the privilege of a tiny minority. 

Here again, it is necessary, if we want any clarity, to ward off 
a too easy, superficial assent from math ed reformers who say, "Yes, 
that's why we must use The Method of Discovery." For, when "Discovery" 
means discovery this is wonderful, but in reality "Discovery" usually 
means something akin to the following fantasy about a poetry class: 
the discovery-method teacher has perfected a series of questions that 
lead the class to discover the line "Mary had a little lamb." My point 
is not that this would be good or bad, but that no one would confuse it 
with creative work in poetry. 

Is it possible for children to do creative mathematics (that is 
to say: to do mathematics) at all stages of their scholastic (and even 
adult!) lives? I will argue that the answer is: yes, but a great deal 
of creative mathematical work by adult mathematicians is necessary to 
make it possible. The reason for the qualification is that the traditional 
branches of mathematics do not provide the most fertile ground for the 
easy, prolific growth of mathematical traits of mind. We may have to 
develop quite new branches of mathematics with the special property 
that they allow beginners more space to romp creatively, than does number 
theory or modernistic algebra. In the following pages will be found 
some specific examples which it would be pretentious to call "new 
peciagogical oriented branches of mathematics" but which will suggest to 
cooperative readers what this phrase could mean. 

Obstreperous readers will have no trouble finding objections. 
Mathematical elitists will say: "How dare you bring these trivia to 
disturb our contemplation of the true mathematical structures." Practical 
people will say: "Romping? Pomping? Who needs it? What about practical 
skills in arithmetic?" 

The snob and the anti-snob are expressing the same objection in 
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different words. Let me paraphrase it, "Traditional schools have found 
mathematics hard to teach to so-called average children. Someone brings 
along a new set of activities, which seem to be fun and easy to learn. 
He declares them to be mathematics! Well, that does not make them 
mathematics, and it doesn't turn them into solutions to any of the hard 
problems facing the world of math ed. 1I 

This argument raises serious issues, from which I single out a 
question which I shall ask in a number of different forms: 

In becoming a mathematician does one learn 
something other and more general than the 
specific content of particular mathematical 
topics? Is there such a thing as a 
Mathematical Way of Thinking? Can this be 
learned and taught? Once one has acquired 
it, does it then become quite easy to learn 
particular topics -- like the ones that 
obsess our elitist and practical critics? 

Psychologists sometimes react by saying, IIOh, you mean the trans
fer problem. II But I do not mean anything analogous to experiments on 
whether students who were taught algebra last year automatically learn 
geometry more easily than students who spent last year doing gymnastics. 
I am asking whether one can identify and teach (or foster the growth of) 
something other than algebra or geometry, which, once learned, will make 
it easy to learn algebra and geometry. No doubt, this other thing 
(let's call it the MWOT) can only be taught by using particular topics 
as vehicles. But the IItransfer ll experiment is profoundly changed if 
the question is whether one can use algebra as a vehicle for deliberately 
teaching transferable general concepts and skills. The conjecture 
underlying this essay is a very qualified affirmative answer to this 
question. Yes, one can use algebra as a vehicle for initiating students 
to the mathematical way of thinking. But, to do so effectively one 
should first identify as far as possible components of the general 
intellectual skills one is trying to teach; and when this is done it will 
appear that algebra (in any traditional sense) is not a particularly 
good vehicle. 

The alternative choices of vehicle described below all involve 
using computers, but in a way that is very different from the usual 
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suggestions of using them either as "teaching machines" or as 
IIsuper-slide-rulesli. In our ideal of a school mathematical laboratory 

the computer is used as a means to control physical processes in order 
to achieve definite goals ... for example as part of an auto-pilot 
system to fly model airplanes, or as the "nervous system" of a model 
animal with balancing reflexes, walking ability, simple visual ability 
and so on. To achieve these goals mathematical principles are needed; 
conversely in this context mathematical principles become sources of 
power, thereby acquiring meaning for large categories of students who 
fail to see any point or pleasure in bookish math and who, under pre
vailing school conditions, simply drop out by labelling themselves 
IInot mathematically minded. 1I 

The too easy acceptance of this takes the form: "Yes, applica-: 
tions are motivating." But "motivation" fails to distinguish alienated 
work for a material or social reward from a true personal involvement. 
To develop this point I need to separate a number of aspects of the way 
the child relates to his work. 

A simple, and important one, is the time scale. A child interested 
in flying model airplanes under computer control will work at this project 
over a long period. He will have time to try different approaches to 
sub-problems. He will have time to talk about it, to establish a 
common language with a collaborator or an instructor, to relate it to 
other interests and problems. This project-oriented approach contrasts 
with the problem approach of most math teaching: a bad feature of the 
typical problem is that the child does not stay with it long enough to 
benefit much from success or from failure. 

Along with time scale goes structure. A project is long enough 
to have recognizable phases -- such as planning, choosing a strategy 
of attempting a very simple case first, finding the simple solution, 
debugging it, and so on. And if the time scale is long enough, and the 
structures clear enough, the child can develop a vocabulary for articulate 
discussion of the process of working towards his goals. 

I believe in articulate discussion (in monologue or dialogue) 
of how one solves problems, of why one goofed that one, of what gaps 
or deformations exist in onels knowledge and of what could be done about 



-5-

it. I shall defend this belief against two quite distinct objections. 
One objection says: "itls impossible to verbalize; problems are solved 
by intuitive acts of insight and these cannot be articulated." The 
other objecti on says: "i tis bad to verba 1 i ze_; remember the centi pede 
who was paralyzed when the toad asked which leg came after which." 

One must beware of quantifier mistakes when discussing these 
objections. For example, J.S. Bruner tells us (in his book Towards a 
Theory of Instruction) that he finds words and diagrams "impotent" in 
getting a child to ride a bicycle. But while his evidence shows (at best) 
that some words and diagrams are impotent, he suggests the conclusion 
that all words and diagrams are impotent. The interesting conjecture is 
this: the impotence of words and diagrams used by Bruner is explicable 
by Brunerls cultural origins; the vocabulary and conceptual framework 

. of classical psychology is simply inadequate for the description of such 
dynamic processes as riding a bicycle! To push the rhetoric further, I 
suspect that if Bruner tried to write a program to make an IBM 360 drive 
a radio controlled motorcycle, he would have to conclude (for the sake 
of consistency) that the order code of the 360 was impotent for this 
task. Now, in our laboratory we have studied how people balance 
bicycles and more complicated devices such as unicycles and circus balls. 
There is nothing complex or mysterious or undescribable about these 
processes. We can describe them in a non-impotent way provided that 
a suitable descriptive system has been set up in advance. Key components 
of the descriptive system rest on concepts like: the idea of a 
IIfirst order ll or "linear ll theory in which control variables can be 
assumed to act independently; or the idea of feedback. 

A fundamental problem for the theory of mathematical education 
;s to identify and name the concepts needed to enable the beginner to 
discuss his mathematical thinking in a clear articulate way. And when 
we know such concepts we may want to seek out (or invent!) areas of 
mathematical work which exemplify these concepts particularly well. 
The next section of this essay will describe a new piece of mathematics 
with the property that it allows clear discussion and simple models of 
heuristics that are foggy and confusing for beginners when presented 
in the context of more traditional elementary mathematics. 
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2. Turtle Goemetry: A Piece of Learnable and Lovable Mathematics 

The physical context for the following discussion is a quintuple 
consisting of a child, a teletype machine, a computer, a large flat 
surface and an apparatus called a turtle. A turtle is a cybernetic 
toy capable of moving forward or back in a particular direction (relative 
to itself) and of rotating about its central axis. It has a ~, which 
can be in two states called PENUP and PENDOWN. The turtle is made to 
act by typing commands whose effect is illustrated in Figure 1. 

Figure 1: TURTLE LANGUAGE 

At any time the turtle is at a particular place and facing in 
,a particular direction. The place and direction together are the turt1e ' s 
geometric state. The picture shows the turtle in a field, used here only 
to give the reader a frame of reference: 

A 

FORWARD 50 

fl 

LEFT 90 

c::l 

The triangular 
picture shows 
the direction. 

The turtle ad-
va need 50 units 
in the direction 
it was facing. 

The turtle's posi-
tion remained fixed. 
It rotated 90° to 
the left. So its 
direction changed. 

FORWARD 150 

(4) c::J 

LEFT 135 
(5) 

~ 

PENDOWN 

FORWARD 70 
(6) 

~ 

The turtle advanced 
150 units in its new 
direction. 

The turtle rotated 
left 135°. 

(Produces no visible 
effect. But the next 
FORWARD instruction 
will leave a trace.) 

IThe effect rif PENDOWN 
is to put the turtle 
in a stare to leave 
a trace: the pen draws 
on the ground. 
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(a) Direct Commands 

The following commands will cause the turtle to draw Figure 2. 

PENDOWN 
FORWARD 100 
RIGHT 60 
FORWARD 100 
BACK 100 
LEFT 120 
FORWARD 100 

(b) Defining a procedure 

Figure 2 

PEACE 

The computer is assumed to accept the language LOGO (which we 
have developed expressly for the purpose of teaching children, not 
programming but mathematics). The LOGO idiom for asserting the fact 
that we are about to define a procedure is illustrated by the following 
example. We first decide on a name for the procedure. Suppose we 
choose "PEACE". Then we type: 

TO PEACE 
1 FO RWARD 100 
2 RIGHT 60 
3 FO RWARD 100 
4 BACK 100 
5 LEFT 120 
6 FO RWARD 100 
END 

These are directions telling the computer 
how to PEACE. The word "TD" infonns the 
computer that the next word, "PEACE", is 
being defined and that the numbered lines 
constitute its definition. 

The turtle doesn't move while we are typing this. The word liTO" and the 
line numbers indicated that we were not telling it to go forward and so on; 
rather we were telling it how to execute the new command. When we have 
indicated by the word IIENDII that our definition is complete the machine 
echoes back: 
PEACE DEFINED 
and now if we type 

PENDOWN 
PEACE 

the turtle will carry out the commands and draw Figure 2. Were we to 
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omit the cornnand "PENDOWN" it would go through the motions of drawing 
it without leaving a visible trace. 

The peace sign in Figure 2 lacks a circle. How can we describe 
a circle in turtle language? 

An idea that easily presents itself to mathematicians is: let 
the turtle take a tiny step forward, then turn a tiny amount and keep 
doing this. Thi might not quite produce a circle, but it is a good 
first plan, so letls begin to work on it. So we define a procedure: 

TO CIRCUS 
1 FORWARD 5 
2 RIGHT 7 
3 CIRCUS 
END 

Notice two features 
(a) The procedure refer'S to itself in line 3. This looks 

circular (though not in the sense we require) but really is not. The 
effect is merely to set up a never-ending process by getting the computer 
into the tight spot ~ would be in if you were the kind of person who 
cannot fail to keep a promise and you had been tricked into saying, 
"I promise to repeat the sentence I just said." 

(b) We selected the numbers 5 and 7 because they seemed small, 
but without a firm idea of what would happen. However an advantage of 
having a computer is that we can try our procedure to see what it does. 
If an undesirable effect follows we can always debug it; in this case, 
perhaps, by choosing different numbers. If, for example, the turtle 
drew something like Figure 3a, we would say to ourselve , "Itls not 
turning enough" and replace 7 by 8; on the other hand if it drew 
Figure 3b we might replace 7 by 6. 

Figure 3a Figure 3b 

A 
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I wish I could collect statistics about how many m1th~matically 
sophisticated readers fell into my trap! Experience shows that a large 
proportion of math graduate students will do so. In fact, the procedure 
cannot generate either 3a or 3b! If it did, it would surely go on to . 
produce an infinite spiral. And one can easily see that this is impossible 
since the same sequence of commands would have to produce parts of the 
curve that are almost flat, and other parts that are very curved. More 
technically, one can see that the procedure CIRCUS must produce a close 
approximation to a circle (i .e. what is, for all practical purposes a 
circle) because it must produce a curve of constant curvature. 

One can come to the same conclusion from a more general theorem. 
We call procedures like CIRCUS "fixed instruction procedures" because 
they contain no variables. 

THEOREM: Any figure generated by a fixed instruction procedure can 
be bounded either by a circle or by two parallel straight lines. 

Examples of figures that can and that cannot be so bounded are 
shown in Figure 4. 

A Figure Bounded by parallel lines 

Figure 4 

A Figure Bounded neither by 
parallel lines nor by a circle. 
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We now show how to make procedures with inputs in the sense 
that the command FORWARD has a number, called an input, associated with 
it. The next example shows how we do so. (The words on the title line 
preceded by":" are names of the inputs, rather like the XiS in school 
algebra.) In the fifth grade class we read :NUMBER as dots NUMBER or 
as the thing of "NUMBER", emphasizing that what is being discussed is 
not the word "NUMBER" but a thing of which this word is the name. 

TO POLY :STEP :ANGLE 
1 FORWARD :STEP 
2 lEFT :ANGLE 
3 POLY :STEP :ANGLE 
END 

This procedure generates a rather wonderful collection of pictures as 
- we gi ve it di fferent inputs. 

Although POLY has provision for inputs it is really a fixed 
instruction procedure. To create one that is not, we change the last line 
of POLY. We change the title also, though we do not need to do so~ 

Old Procedure 

TO POLY :STEP :ANGLE 
1 FORWARD !STEP 
2 LEFT: ANGLE 
3· POLY :STEP :ANGLE 
END 

New Procedure 

TO POLYSPI :STEP :ANGLE 
1 FORWARD :STEP 
2 LEFT :ANGLE 
3 POLYSPI :STEP+20 :ANGLE 
END 

The effect of POLYSPI is shown in Figure 5. 

" 

UQ] 
r-t" 

Fi gure 5 

POLYSPI 5 90 

or 
Squi ral 
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We have seen we can use POLY to draw a circle. Can we now use 
it to draw our peace sign? We could, but will do better to make a 
procedure, here called ARC whose effect will be to draw any circular 

. segment given the diameter and the angle to be drawn as in Figure 6. 
The procedure is as follows where in line 2 a special constant called 
"PIE" is used and the asterisk sign is used for multiplication. (Do not 
assume that :PIE is what its name suggests.) 

TO ARC :DIAM :SECTOR 
1 IF :SECTOR=O STOP 
2 FORWARD :PIE*:DIAM 
3 RIGHT 1 
4 ARC :DIAM :SECTOR-l 
END 

We can now make a procedure using the old procedure PEACE as a 
sub-procedure: 

TO SUPERPEACE 
1 ARC 200 360 
2 RIGHT 90 
3 PEACE 
END 

Fi gure 6 

SUPEnPEACE 

Better yet we r-oll1d rewrite PEACE to have inputs. For example: 

TO PEACE :SIZE 
1 FORWARD: SIZE 
2 RIGHT 60 
3 FORWARD: SIZE 
4 BACK :SIZE 
5 LEFT 120 
6 FORWARD: SIZE 
7 RIGHT 90 
8 ARC 2*:SIZE 360 

Then peace signs of different sizes can be made by the commands: 
PEACE 100 
PEACE 20 
and so on. 
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We can use the command ARC to draw a heart: 

TO HEART :SIZE 
1 ARC :SIZE/2 180 
2 RIGHT 180 
3 ARC :SIZE/2 180 
4 ARC :SIZE*2 60 
5 RIGHT 60 
6 ARC :SIZE*2 60 
END 

MINITHEOREM: A heart can be made of four circular arcs. 

We can also use it to draw a flower. Notice in the following the charac
teristic building of new definitions on old ones. 

A computer program to draw this flower 
uses the geometric observation that petals can 
be decomposed (rather surprisingly!) as two 
quarter circles. So let's assume we have a 
procedure called TO QCIRCLE whose effect is 
shown by the examples. Some of them show 
initial and final positions of the turtle, 
some do not. 

QCIRCLE 50 

QCIR,CLE 100 

Now let's see how to make a petal. 

TO PETAL :SIZE 
1 QCIRCLE :SIZE 
2 RIGHT 90 
3 QCIRCLE :SIZE 
END 

o PETAL 100 



TO FLOWER :SIZE 
1 PETAL :SIZE 
2 PETAL :SIZE 
3 PETAL :SIZE 
4 PETAL :5IZE 
END 

TO STEM :SIZE 
1 RIGHT 180. 
2 FORWARD 2*:5IZE 
3 RIGHT 90 
4 PETAL :51ZE/2 
5 FORWARD :SIZE 
END 

TO PLANT :5IZE 
1 PENDOWN 
2 FLOWER :5IZE· 
3 STEM :SIZE 
4 PENUP 
END 

Now let's play a little. 

TO HEXAFLOWER :51ZE 
1 RIGHT.,90 
2 FORWARD 4*:5IZE 
3 PLANT :SIZE 
4 FORWARD'-: SIZE
S RIGHT .30 ' . 
6 HEXAFLOWER: SIZE. 
END 
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FLOWER 100 STEM 100 

PLANT 50 

HEXAFLOWER 50 

o a 
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3. Creativity? Mathematics? 

In classes run by members of the M.I.T. Artificial Intelligence 
Laboratory we have ta.ught th i ski nd of geometry to fi fth graders, some 
of whom were in the lowest categories of performance in "mathematics". 
Their attitude towards mathematics as normally taught was well expressed 
by a fifth grade girl who said firmly, "There ain't nothing fun in math!" 
She did not classify working with the computer as math, and we saw no 
reason to disabuse her. There will be time for her to discover that 
what she is learning to do in an exciting and personai way will elucidate 
those strange rituals she meets in the math class. 

Typical activities in early stages of work with children of 
this age is exploring the behavior of the procedure POLY by giving it 
different inputs .. There is inevitable challenge -- and competition -
in producing beautiful or spectacular, or just different effects. One 
gets ahead in the game by discovering a new phenomenon and by finding 
out what classes of angles will produce it. 

The real excitement comes when one becomes courageous enough to 
change the procedure itself. For example making the change to POLYSPI 
occurs to some children and, in our class, led to a great deal of 
excitement around the truly spontaneous discovery of the figure now 
called a squiral (Figure 5). (Note: By spontaneous I mean, amongst 
other things, to exclude the situation of the discovery teacher standing 
in front of the class soliciting pseudo-randomly generated suggestions. 
The squ;ral was found by a child sitting all alone at his computer 
terminal!) By no means all the children will take this step -- indeed 
once a few have done so it becomes derivative for the others. Nevertheless, 
we might encourage them to explore inputs to POLYSPI. There is room 
here for the discovery of more phenomena. For example, taking :ANGLE 
as 120 produces a neat triangular spiral. But 123 produces a very 
different phenomena. 
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Fi gure 7 

POLYSPI 5 120 POLYSPI 5 123 

What else produces similar effects? 

Fi gure 8 

POL YSPI ,5 121 POLYSPI 5 93 
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The possibilities for original minor discoveries are great. 
One girl became excited for the first time about mathematics by 
realizing how easy it was to make a program for Figure 9 by 

(1) observing herself draw a similar figure 
(2) naming the elements of her figure -- IIBIG II and "SMALL II 

so that she could talk about them and so describe what 
she was doing 

(3) describing it in LOGO 

TO GROWSHRINK :BIG :SMALL 
1 FORWARD :BIG 
2 RIGHT 90 
3 FORWARD :SMALL 
4 RIGHT 90 
5 GROWSHRINK :BIG-10 :SMALL+10 
END 

Figure 9 

r""1"""1 

-1 
I I 

I -~-
... H .... 
~ 

L 

J 1 
]" 
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The possibilities are endless. These are small discoveries. But 
perhaps one is already closer to mathematics in doing this than in 
learning new formal manipulations, transforming bases, intersecting 
sets and drifting through misty lessons on the difference between 
fractions, rationals and equivalence classes of pairs of integers. 
Perhaps learning to make small discoveries puts one more surely on 
a path to making big ones than does faultlessly learning any number 
of sound algebraic concepts. 
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4. Some Physical Mathematics 

The turtle language is appropriate for many important physical 
problems. Consider, for example, the problem of understanding planetary 
orbits as if one were a junior high school student. One would find
conceptual barriers of varying degrees of difficulty. Certainly the 
idea of the i~verse square law is simple enough. Somewhat harder is the 
representation of velocities, accelerations and forces as vectors. But 
the insuperable difficulty in reading a text on the subject comes from 
the role of differential equations. The really elegant and intelligible 
physical ideas give rise to local differential descriptions of orbits; 
translating those into global ones usually involves going through the 
messy business called IIsolvingll differential equations. 

Turtle geometry helps at all these points. The use of vectors 
is extremely natural. And the local differential description takes the 
form of a procedure that can be run so as to produce a drawing of a 
solution or studied using theorems and analytic concepts about procedures. 

The framework for thinking about orbital theory in turtle terms 
presupposes prior contact with the concepts of state and of quantized 
time -- both of which occur very easily and naturally in many computa
tional situations. The state of the IIplanetll is its position and a 
certain vector called, say IIJUMP". If the planet were left alone it 
would move by :JUMP at every clock time. Thus it would go off, forever, 
in a straight line. In the presence of the sun, we think of it as 
undergoing two movements: it moves by :JUMP and then it falls into the 
sun! To make this more precise we put these two actions together using 
a procedure called "VECTORADD II , which could be defined by the children 
or given as a primitive. Thus we obtain a LOGO procedure whose general 
idea will be intelligible to readers who try hard enough. (Two helpful 
corrunents: MAKE is the LOGO idiom for assignment, or setting values, 
so that line 1 in the procedure will cause the quantity 
VECTORADD OF :JUMP AND FAL~ to be computed and given the name IINEWJUMP". 
This computation assumes the existence of another procedure, called 
"FALL II , which will compute the IIfall into the sun vector". These ideas 
might seem confusing when presented fast; ten year old children under
stand them fluently when they are presented properly.) 



TO FLY :JUMP 
1 MAKE 

NAME "NEWJUMp u 
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THING VECTORADD OF :JUMP AND FALL 
2 SETHEADING (DIRECTION :NEWJUMP) 
3 FORWARD (LENGTH :NEWJUMP) 
4 FLY: NEWJUMP 
END 

Using this same idea one can easily deal in an experimental way 
with three bodies; one can design space-ship orbits, synchronous 
satellites and so on endlessly. 
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5. Control Theory as a Grade School Subject or Physics in the Finger Tips 

We begin by inviting the reader to carry out the illustrated 
experiments -- or to recall doing something similar. 

One of the goals of this unit of study will be to understand 
how people do this and particularly to understand what properties of a 
human being determine what objects he can and what objects he cannot 
balance. 

A "fonnal physical II model of the stick balancing situation is 
provided by the apparatus illustrated next: 

, 

LIGHT 
RIGID 
ROD 

WEIGHT CLAMP: VARIABLE 
MASS AND POSITION 

HINGE WITH 1 DEGREE 
OF FREEDOM 

TRUCK 

RAil TO MAKE PROBLEM 
1 - 01 M ENSIONAl 

CHI LO KEEPS ROD FROM 
FALLING BY PUSHING 
TRUCK BACK AND FORTH 
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WIRE TO 
COMPUTER 

TURTLE KEEPS ROD FROM FALLING 
BY MOVING FORWARD AND BACK. 
POTENTIOMETER IN HINGE PROVIDES 
INFORMATION FOR FEEDBACK. 

A computer controlled version replaces the track and the child 
by a turtle with the angle sensor plugged into its sensor socket. A 
simple minded-procedure will do a fair amount of balancing (provided that 
the turtle is fast!!): 

TO BALANCE 
1 TEST ANGLE> 10 
2 IFTRUE FORWARD 8 
3 TEST ANGLE < -10 
4 I FTRUE BACK 8 
5 WAIT 1 
6 BALANCE 
END 

This procedure is written as part of a project plan that begins bys~1ng: 
neglect all complications, try something. Complications that have been 
neglected include: 

(1) The'end of the line bug. 

(2) The overshoot bug. 
(Perhaps in lines 2 and 4 the value 8 is too much or 
too little.) 

(3) The Wobbly Bug 
The TEST in the procedure might catch the rod over to 
the left while it is in rapid motion towards the right. 
When this happens we should leave well alone! 
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One by one these bugs, and others can be eliminated. It is not 
hard to build a program and choose constants so that with a given setting 
of the movable weight, balance will be maintained for long periods of time. 
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6. What are the Primitive Concepts of Mathematics? 

-To see points and lines as the primitive concepts of geometry 
is to forget not only the logical primitives (such as quantifiers) but 
especially the epistemological primitives, such as the notion of a 
mathematical system itself. For most children at school the problem is 
not that they do not understand particular mathematical structures or 
concepts. Rather, they do not understand what kind of thing a mathematical 
structure is: they do not see the point of the whole enterprise. Asking 
them to learn it is like asking them to learn poetry in a completely 
unknown foreign language. 

It is sometimes said tha-t in teaching mathematics we should 
emphasize the process of mathematization. I say: excellent! But on 

. condition that the child should have the experience of mathematizing 
for himself. Otherwise the word IImathematizing" is just one more 
scholastic term. The thrust of the explorations I have been describing 
is to allow the child to have living experiences of mathematizing as an 
introduction to mathematics. We have seen how he mathematizes a heart, 
a squiral, his own behavior in drawing a GROWSHRINK, the process of 
balancing a stick, and so on. When mathematizing familiar processes 
is a fluent, natural, enjoyable activity, then is the time to talk about 
mathematizing mathematical structures, as in a good pure course on 
modern algebra. 

But what are the ingredients of the process of mathematizing? 
Is it possible to formulate and teach knowledge about how one is to 
tackle for example, the problem of setting up a mathematical representation 
of an object such as the hearts and flowers we discussed earlier? 

Our answer is very definitely affirmative, especially in the 
context of the-kind of work described above. Consider for example, how 
we would teach ch i 1 dren to go about prob 1 ems 1 i ke drawi ng a he art. _ 
First step we say: if you cannot solve the problem as it stands, try 
simplifying it; if you cannot find a complete solution, find a partial 
one. No doubt everyofte gives similar advice. The difference is that 
in thi s context the advi ce- is concrete enough to be fo 11 owed by ch i 1 dren 
who seem quite impervious to the usual math. 
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A simplification of the heart problem is to settle, as a first 
approximation, on a triangle; which we then consider to be a very primitive 
heart. 

TO TRI 
1 FORWARD 100 
2 RIGHT- 120 
3 FORWARD 100 
4 RIGHT 120 
5 FORWARD 100 
END 

TRI 

Now that we have this construction firmly in hand we can allow ourselves 
to modify it so as to make it abetter heart. The obvious plan is to 

. replace the horizontal line by a structure line. So we write a procedure 
to make this. First choose it a name, say "TOP", then write: 

TO TOP :SIZE 
1 ARC :SIZE/2 180 
2 RIGHT 180 
3 ARC :SIZE/2 180 
END TOP 

Replacing line 1 in TO TRI by TOP we get: 

TO TRI 
1 TOP 100 
2 RIGHT 120 
etc. 

HEART WITH BUG 

The effect is as shown! Is this a failure? We might have so classified 
it (and ourselves!) if we did not have another heuristic concept: 
BUGS and DEBUGGING. Our procedure did not fail. It has a perfectly 
inte11igib1e~. To find the bug we follow the procedure through in a 
very FORMAL way. (Formal is another concept we try to teach.) We soon 
find that the trouble is in line 2. Also we can see why. Replacing 
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line 1 by TOP did what we wanted, but it also produced a SIDE-EFFECT. 
(Another important concept.) It left the turtle facing in a different 
direction. Correcting it is a mere matter of changing line 2 to RIGHT 30. 
And then we can go on to make the fully curved heart. Unless we decide 
that a straight-sided one is good enough for our purposes. 

Straight-sided Heart Curved Heart 

Our image of teaching mathematics concentrates on teaching 
concepts and terminology to enable children to be articulate about the 
process of developing a mathematical analysis. Part of doing so is 
studying good models (such as the heart anecdote) and getting a lot of 
practice in describing one's own ,attempts at following the pattern of 
the model in other problems. It seems quite paradoxical that in develop
ing mathematical curricula, whole conferences of superb mathematicians 
are devoted to discussing the appropriate language for expressing the 
formal part of mathematics, while the individual teacher or writer of 
text-books is left to decide how (and even whether) to deal with heuristic 
concepts. 

In summary, we have advanced three central theses: 

(1) The non-formal mathematical primitives are 
neglected in most discussions of mathematical curricula. 

(2) That the choice of content material, especially for 
the early years, should be made primarily as a function 
of its suitability for developing heuristic concepts, 
and 

(3) Computational mathematics, in the sense illustrated by 
turtle geometry, has strong adva-ntages in this respect 
over "classicalll topics. 


