
Constructionism 2010, Paris

 1

Programming Standing Up: Embodied
Computing with Constructionist Robotics
Matthew Berland, matthew.berland@utsa.edu
Dept. of Interdisciplinary Learning & Teaching, University of Texas at San Antonio

Taylor Martin, taylormartin@mail.utexas.edu
Dept. of Curriculum & Instruction, University of Texas at Austin

Tom Benton, soibois@hotmail.com
Dept. of Curriculum and Instruction, University of Texas at Austin

Abstract
IPRO (shown below) is a mobile, constructionist, virtual robotics programming environment
designed to teach computational literacy. Students use a simplified programming language to
control the behavior of a robot agent as it undertakes various collaborative and competitive
tasks. Each student programs his/her own robots using a handheld device, and the robots
compete on a shared stage. The project uses handhelds to encourage collaboration and
embodied cognition through physical movement and the sharing of content while programming.
The design is based on other robotics environments for teaching introductory programming in
which there have been measurable learning gains (Berland, 2008; Martin, 2007; Wilensky &
Stroup, 1999a). IPRO is structured as a participatory simulation in that students will participate in
a constructionist shared space (see Wilensky & Stroup, 1999b).

Figure 1 - IPRO Circuit and Play Modes

Constructionist programming tasks are especially well suited to this type of collaboration
because they involve complex, concrete tasks with a strong connection of the conceptual and
the technical. Students collaboratively refine their conceptual understanding by freely sharing
their technical products. Our goal is that students in the project will approach programming as an
active, physical task, and that they will be motivated to engage with the content as a result. The
design of IPRO is focused on determining pathways to stronger understanding of programming
content as well as to levels of increased motivation.

Keywords (style: Keywords)
Embodied cognition; robotics; collaborative; handheld; programming; computational literacy 

Constructionism 2010, Paris

 2

Introduction
Given the computer's iconic status as the quintessential amodal, decontextualized thinking
device, discussing embodied programming is a bit vague at best. However, if we are to
understand computational thinking (CT) and programming from a constructionist perspective,
considering the implications of embodied programming is essential.

There is a profound disconnect between the excitement surrounding the potential of computer-
proficient youth and the actual act of programming a computer. Typically a solitary art, it often
invokes the stereotypical image of a young man hunched over a glowing screen, and the path to
programming proficiency is frequently presumed to demand monk-like devotion to the study of
arcane syntax and keystrokes. Even for computationally literate young people who happily use
software in imaginative and innovative ways, learning programming may hold little appeal when
pursued in solitude. Our challenge is clear: how can programming in the classroom be recast as
engaging, inclusive, and social?

While instruction in many disciplines has been made more active, mobile, and collaborative,
programming instruction has resisted those advances (Ben-Ari, 2001). The goal of this project is
to introduce an element of mobility into programming instruction and encourage students to
collaborate as they move and congregate. We call this “Programming Standing Up”. The
importance of engaging and effective programming instruction cannot be understated:
programming is “hard to learn” (Guzdial, 2004), a core thinking skill (diSessa, 2000), and a core
job skill. Some benefits of mobility with constructive work are also well established – Klopfer,
Squire, & Jenkins (2002) showed that students engage in more complex problem solving about
real world content when they are able to work together in a physical space.

Constructionist programming tasks are especially well suited to this enhanced collaboration
because they involve complex, concrete tasks with a strong connection between the conceptual
and the technical. Students collaboratively refine their conceptual understanding by freely
sharing their technical products. Pedagogy in programming classes has often valued
reproduction of ‘authentic’ professional practice over innovative pedagogy (Ben-Ari, 2001).
However, as we know from Smith, diSessa, & Roschelle (1993), authentic demonstration of
expert practice is not necessarily the best path to understanding. Our goal is that students in the
project will approach programming as an active, physical task, and that they will be motivated to
engage with the content as a result.

To that end, we are developing, implementing, and deploying a constructionist mobile,
collaborative programming platform focusing on the design, generation, and evaluation of
algorithmic knowledge, strategies, and models; these are the basic elements of computer
science education as described by Robins, Roundtree, and Roundtree (2003).

IPRO (for both “iPod Robotics” and “I (can) program!”) is a virtual robotics environment that
builds upon the previous designs of the authors, along with previous research on the
development of novice programming environments (a more detailed description is below).
Students use a robust programming language to control the behavior of a robot agent as it
undertakes various collaborative and competitive tasks. The design is based on other robotics
environments for teaching introductory programming in which there have been measurable
learning gains (Martin, 2007). IPRO is structured as a participatory simulation in that students
will participate in a constructionist shared space (see Wilensky & Stroup, 1999b, for more
detail).

The research design around IPRO is focused on determining pathways to stronger

Constructionism 2010, Paris

 3

understanding of programming content as well as to levels of increased motivation.

Our primary hypotheses are:

1. Learning to program on mobile devices will lead to a greater incidence of on-task
interaction by students with their peers as well as with the world around them.

2. These new interactions will lead to an operationalized understanding of key
computational concepts, and will flatten the learning curve as students move on to new
programming environments.

3. These new interactions will also lead to increased student engagement with
programming.

4. The process of learning to program standing up will be dramatically different from
learning to program at a stationary computer.

Constructionist Pathways to Computational Literacy
The term computational literacy has often been used to describe proficient usage of a few
standard desktop computer applications. For example, as a secondary school teacher, one
author taught a class called "computer literacy," which focused on Microsoft Word, Excel, and
PowerPoint. Papert (1980) argues that computational literacy should instead mirror ‘print literacy’
more closely. The modern conception of print literacy does not stop at reading - the print
literature individual should be able to express herself in writing as well. As such, computational
literacy should not stop at the ability to use computer software; rather, it should include the ability
to create and/or manipulate computer software (or hardware) to communicate and disseminate
ideas. The expressive and authoring aspects of computational literacy have been long ignored in
the pre-collegiate curriculum, but a shift towards a more participatory picture of media and
technology education is underway; this shift is supported by research while reflecting changing
relationships between young people and technology (Jenkins, 2006).

Much of the modern constructionist work uses computational literacy as a focus to teach
complex content (e.g., Blikstein & Wilensky, in press). However, different forms of content and
different sets of students are amenable to different approaches, and teaching ‘deep’
computational literacy is not identical to using computational literacy to teach other content (such
as mathematics). How do we help students develop this type of deep computational literacy?
This is a fundamental question of constructionism. Embodied cognition provides one key to
answering this question.

Embodied Cognition and IPRO
Embodied cognition recognizes and tries to understand how being in a body and interacting with
a physical world shapes and impacts the development of thinking, problem solving, and learning.
The typical picture of programming alluded to earlier, the solitary male hunched over a computer
monitor, seems the complete antithesis of an embodied activity. However, programmers often
describe the computer as an extension of themselves, as a highly responsive tool for interacting
with the world (diSessa, 2000; A. Randall, writer of Perl 6 (O'Reilly), personal communication,
2010). While we will not turn our students into expert programmers overnight, we can help
students develop programming experience in ways that might lead to this type and degree of
proficiency.

In placing the programming environment on a mobile device, which a student uses while
standing up in a group of other students, we change fundamental aspects of the system
characterizing the relationship between the learner and what is to be learned. That system now

Constructionism 2010, Paris

 4

includes new pathways, such as moving one’s own body or other objects in the classroom, the
ability to easily show other students what is happening with your simulation or with the code
underneath it, and the ability to organize in groups that afford more direct sociability than if
students (or pairs) are seated at individual computers. Considering some of the main themes of
embodied cognition can help us identify implications of this changed system. If cognition
evolves from perception and action (Anderson, 2007; Fischer, 1980; Seitz, 2000; Varela,
Thompson, & Rosch, 1993; Wilson, 2002), programming a robot will be easier if one can attempt
to embody a robot during the process. This relies in large part on possibilities for off-loading
some cognitive work to the environment (Hutchins, 1995; Kirsh, 2008); in this case that might
include acting out what one thinks certain commands or combinations of commands might do,
potentially leading to better programming and clearer communication between students about
programming. Embodied cognition claims that much less of what we do is guided by plans made
ahead of time, and more is guided by on-the-fly tightly coupled act-plan cycles (Suchman, 1988).
If so, the mobile programming environment affords exactly this type of work; fresh ideas can be
explored in physical space, programmed, and evaluated in virtual space without interruption.
This tight coupling of the physical and the virtual is important to have in mind while viewing this
project through the lens of embodied cognition. The authors have done significant research on
the effects of virtual versus physical environments on instruction in programming as well as
mathematics problem solving and have found unique benefits in both cases. For example, virtual
environments can help struggling children learn mathematics faster because children can see
any or all steps of a problem solution as many times as they like (Martin & Schwartz,
2005). Meanwhile, working in the physical environment is often linked to deeper conceptual
processing and understanding (Penner, Lehrer, & Schauble, 1998). We hypothesize that the
IPRO environment could capitalize on the benefits of both these approaches.

Why Constructionist Virtual Robotics?
Constructionist research suggests that IPRO will be beneficial for learning because it
approaches learning as an active participant (Harel & Papert, 1990); embodied cognition
research suggests how Programming Standing Up could change the nature of the programming
task to make it more accessible. But why do this programming in the context of robotics?

Strong Support for Constructionism
Robotics have been associated with constructionist approaches since its beginnings (Papert,
1980). It continues to be a core element of many constructionist projects (e.g., Hancock, 2003;
Portsmore, 1999; Resnick & Ocko, 1991). As Wilensky (2000) notes, tools that utilize the
individual components needed to complete the aggregate can both help the student understand
the final concept but also allow the investigator to understand the process of learning. Wilensky
differentiates “black box” projects in which subjects begin in the middle of the process of creation
with “glass box” projects in which subjects can see the process of creation from start to finish.
Programmable autonomous robotics curricula provide a consummate example of this kind of
“glass box” work.

Significant Evidence to Suggest Learning Benefits for Math and Science
As part of a broader initiative to improve math and science education, several thousand schools
have implemented robotics classes and clubs for K-12 students. Anecdotal evidence about how
robotics classes have improved student interest level, creativity, and reasoning skills are well
documented (Genalo & Gilchrist, 2006; Lau, McNamara, Rogers, & Portsmore, 2001). Recently,
work on the specific benefits of robotics and LEGO-like toys has been materializing. Using a
simulated standardized math test, Lindh and Holgersson (2007) tested 996 fifth and ninth grade
students in Sweden. They found that, for students who were slightly below average in math,
taking robotics in 5th grade improved math test scores relative to their counterparts who did not

Constructionism 2010, Paris

 5

take robotics. Wolfgang, Stannard, and Jones (2003) followed a group of 27 students from pre-K
through 12th grade and discovered several significant correlations. Pre-K students who were
adept with (non-robotic) LEGO blocks went on to score high on standardized high school tests,
took more honors and higher math courses, and had a higher weighted grade point average in
math courses.

Access issues
On one hand, the immediacy and physicality of robotics would appear to make it a natural
context for teaching programming. Coded commands can instantly be visualized as a simulation
during testing – following a successful test, students can program their actual robot and get the
satisfaction of seeing their programming "come to life." However, robotics is sometimes
characterized as having narrow appeal, primarily to the types of students already sitting in the
seats of our college engineering classrooms. As such, an important element of our research
agenda is examining how IPRO can increase participation of underrepresented groups in
engineering. Considering girls as one of these underrepresented groups, an examination of the
literature suggests favorable reading of how girls benefit from robotics courses and
competitions. Beisser (2006) reports that girls immersed in a LEGO/Logo environment
demonstrate significant improvement in self-efficacy beliefs regarding computer use and their
likelihood of being computer professionals in the future. Weinburg and colleagues (2007) show
that participation in Botball competitions led to increases in both self-efficacy perceptions and
ratings of interest in STEM careers for 7th grade girls. In a qualitative case study of girls in a
Botball program, Stein & Nickerson (2004) found that girls were equally as interested in the
competitive nature of the game robotics environment as boys and were not driven away by it.

We believe this evidence suggests that the issue of equity and robotics is a real problem and
worthy of further study, particularly in light of the widespread use of robotics activities in
classrooms and after school clubs.

IPRO: A Constructionist Mobile Programming Environment
IPRO is an iPhone & iPod Touch virtual robotics programming environment and game space
that we are developing for this project. It is made up of two fundamental components: a
development environment (‘the board’) for the IPRO language and a shared game space (‘the
field’) where students’ virtual robots will coexist.

Elements of IPRO

The Field
The field (shown in Figure 2) is where students’ robots compete in teams, collaboratively and
competitively accomplishing tasks and working towards goals. Students will each design their
own robot on the board based on challenges to come in the field. The simplest field activity is a
variant of soccer. Soccer is a game in which several studies have shown success to scaffold
students in robotics and computational literacy (Sklar, 2002).

Constructionism 2010, Paris

 6

Figure 2 - The IPRO Field

The Board
The board is where students program their robots using single-layer encapsulated functions. The
language and function are similar to programming in Scheme, a programming language
commonly used for teaching and learning (such as in the textbook by Abelson, Sussman, &
Sussman, 1985).

IPRO Activity: IPRO-Soccer
The IPRO framework can be used for a variety of activities, but the initial version is designed to
support multi-agent online games of robot soccer. There may be up to 12 robots on the field at
any given time, divided equally into red and blue teams as they enter the game. Each team
attempts to move the ball into the goal (both shown in Figure 3). Each student designs one
robot, but they must work in concert with teammates in order to be successful. The benefits of
framing IPRO activities in terms of soccer are:

1. It is a familiar game to many teachers who have used robotics in their classroom support.
2. There is a significant amount of outside information about strategies for both human and

robot soccer.
3. There is relatively rapid feedback about the success of a strategy.
4. It scales well with robotics and can be attempted with physical robotics as well (Sklar &

Eguchi, 2004).

Constructionism 2010, Paris

 7

Figure 3 – IPRO Team Play

IPRO Language
The IPRO language is a visual programming language based deriving from the Scheme
programming language implementing a simple functional reactive programming paradigm (e.g.,
Cooper & Krishnamurthi, 2006), in that it uses the concept of signals rather than constants. An
example is shown below in Figure 4.

Constructionism 2010, Paris

 8

Figure 4 - IPRO Logic Flows

The fundamental components of a program are sensors and motors. Each IPRO virtual robot
has a symmetrical left and right version of each sensor, and it can move in one of four directions
on a hexagonal grid each time step. The semantics of the language remain fairly simple:

1. During each time step, a set of conditional logic branches is evaluated.
2. Each conditional branch is true or false based on the logic of the sensors. The default set

of sensors:
a. ROBOT-SENSOR = Returns a value that corresponds to an inverse of the distance

from the agent-robot to the nearest robot.
b. GOAL-SENSOR = Returns a value that corresponds to an inverse of the distance

from the agent-robot to the agent-robot's targeted goal.
c. BALL-SENSOR = Returns a value that corresponds to an inverse of the distance

from the agent-robot to the nearest ball.
3. The output of the conditional logic must necessarily be some action in the virtual space:

MOVE-FORWARD-LEFT, MOVE-FORWARD-RIGHT, MOVE-BACKWARD-LEFT,
MOVE-BACKWARD-RIGHT, or TURN-RIGHT.

There are several important differences between IPRO and Scheme.

1. IPRO is significantly simplified, only using those primitives that are relevant to an activity.
2. IPRO is constantly evaluated, so that the student can see the effects of her program

immediately and make changes accordingly.
3. No Syntax or symantic errors are possible – all possible programs compile. However,

they may not all be relevant to an activity.

Constructionism 2010, Paris

 9

Understanding & Modeling the Process of Learning to
Program
The IPRO environment presents a unique opportunity to model how students learn and
collaborate effectively in the classroom. By collecting data on how students share programs and
programming wisdom with each other using their handheld devices, we can, over time,
characterize the collaboration that happens as well as create predictive models.

These novel forms and structures of data, along with the analysis, visualization, and modeling
techniques we propose, have not heretofore been accessible to school-based studies. Berland
(2008) uses multi-agent network theory to illuminate both qualitative/exploratory data and
quantitative performance data in mixed-methods studies (using the model from Abrahamson,
Blikstein, Lamberty, & Wilensky, 2005), but thus far the resources available thanks to the cyber
infrastructure of mobile hardware (GPS, short-range wireless connections, and custom
applications) have not been utilized to map and model collaboration.

IPRO collects data not only on students' individual programs but on how they share specific
parts of those programs. A concrete example of how this might look in a robot soccer game
follows:

1. Juliana builds program to search for the soccer ball. Her program includes three
functions, one of which checks to see if the robot is pointed in the correct direction
("correct-direction?").

2. Maria is building a striker, but her striker should only target the correct goal, so she asks
Juliana for help. She walks over to Juliana and asks to use her "correct-direction?"
function.

3. Juliana shares the function with Maria by utilizing the "share" button on her interface.

All of this data is logged by the system, so we can follow the sharing as it happens see who is
collaborating with whom. We can analyze this data statically as well as dynamically.

Conclusions
Like engineering, programming in the classroom does not lend itself to clean cycles of textbook-
administered instruction and assessment. However, as computational and systems-thinking
skills become increasingly vital, understanding and improving how they are learned has become
a necessity. As such, our paper addresses areas of both educational theory and practice. This
study is designed to innovate the experimental study of embodied cognition theory as well as
use constructionist robotics to better understand the collaborative learning process. Our goal is
to reconsider programming instruction and generate testable, predictive models to usefully guide
future research. Positive findings will contribute to improving the practice of computer science
instruction in the classroom by demonstrating improved learning outcomes in core content areas
and presenting programming as an engaging activity for all learners.

References
Abelson, H., Sussman, G.J., Sussman, J. (1985). Structure and Interpretation of Computer

Programs. New York: MIT Press and McGraw-Hill.

Abrahamson, D., Blikstein, P., Lamberty, K. K. & Wilensky, U. (2005). Mixed-media learning
environments. Paper presented at the annual meeting of Interaction Design and Children
2005, Boulder, Colorado.

Constructionism 2010, Paris

 10

Anderson, M. L. (2007). How to study the mind: An introduction to embodied cognition. In F.
Santoianni & C. Sabatana (Eds.), Brain development in learning environments:
Embodied and perceptual advancements. Cambridge: Cambridge Scholars Press.

Beisser, S. R. (2006). An Examination of Gender Differences in Elementary Constructionist
Classrooms Using Lego/Logo Instruction. Computers in the Schools, 22, 7-19.

Ben-Ari, M. (2001). Constructivism in computer science education. Journal of Computers in
Mathematics and Science Teaching 20(1), 45–73.

Berland, M. (2008). VBOT: Motivating Complex Systems and Computational Literacies in Virtual
and Physical Robotics Learning Environments. Retrieved from ProQuest Digital
Dissertations. (AAT 3307005)

Berland, M., & Wilensky, U. (2004). Virtual robotics in a collaborative constructionist learning
environment. The annual meeting of the American Educational Research Association,
San Diego, CA, April 12 - 16, 2004.

Blikstein, P., & Wilensky, U. (in press). MaterialSim: A constructionist agent-based modeling
approach to engineering education. In M. J. Jacobson & P. Reimann, (Eds.), Designs for
learning environments of the future: International perspectives from the learning
sciences. New York: Springer.

Cooper, G.H. & Krishnamurthi, S. (2006). Embedding Dynamic Dataflow in a Call-by-Value
Language. 15th European Symposium on Programming, Vienna.

diSessa, A. A. (2000). Changing Minds: Computers, Learning, and Literacy. Cambridge, MA:
MIT Press.

Sklar, E. and Eguchi, A. (2004). RoboCupJunior -- Four Years Later. Proceedings of the Eighth
International RoboCup Symposium (RoboCup-2004)

Genalo, L., & Gilchrist, J. (2006). Home Schoolers in an Engineering/Education K12 Outreach
Program. Proceedings of the American Society for Engineering Education Annual
Conference and Exposition, 2006, Retrieved March 1, 2009, from
http://soa.asee.org/paper/conference/paper-view.cfm?id=1209.

Guzdial, M. (2004). Programming environments for novices. In S. Fincher and M. Petre (Eds.),
Computer Science Education Research (pp. 127-154). Lisse, The Netherlands: Taylor &
Francis.

Hancock, C. (2003). Real-time programming and the big ideas of computational literacy.
Unpublished doctoral dissertation, MIT.

Harel, I., & Papert, S. (1990). Software design as a learning environment. Interactive Learning
Environments, 1(1), 132.

Hutchins, E. (1995). Cognition in the Wild. New York: MIT Press.

Jenkins, H. (2006). Confronting the Challenges of Participatory Culture: Media Education for the
21st Century. White Paper for the MacArthur Foundation.

Constructionism 2010, Paris

 11

Kirsh, D. (2008). Distributed cognition: a methodological note. In Itiel Dror and Stevan Harnad
(Eds.) Cognition Distributed. Philadelphia: John Benjamins Publishing Co.

Klopfer, E. & Squire, K. & Jenkins, H. (2002). Environmental Detectives: PDAs as a Window into
a Virtual Simulated World. IEEE International Workshop on Wireless and Mobile
Technologies in Education, 2002, Växjö, Sweden. 95-98.

Lau, P., McNamara, S., Rogers, C., & Portsmore, M. (2001). LEGO Robotics in Engineering.
Proceedings of the American Society for Engineering Education Annual Conference and
Exposition, 2001, Retrieved March 1, 2009, from
http://soa.asee.org/paper/conference/paper-view.cfm?id=16121.

Lindh, J., & Holgersson, T. (2007). Does lego training stimulate pupils' ability to solve logical
problems? Computers & Education. 49, 1097-1111.

Martin, F. (2007). Little Robots that Could: How Collaboration in Robotics Labs Leads to Student
Learning and Tangible Results. Intelligent Automation and Soft Computing, 13(1).

Martin, T. & Schwartz, D.L. (2005). Physically distributed learning: Adapting and reinterpreting
physical environments in the development of fraction concepts. Cognitive Science, 29(4),
587-625.

NRC (2009). Report on a Workshop on the Scope and Nature of Computational Thinking.
Retrieved December 15, 2009 from nap.edu:
http://www.nap.edu/catalog.php?record_id=12840.

Papert, S. (1980). Mindstorms. New York: Basic Books.

Penner, D.E., Lehrer, R., & Schauble, L. (1998). From physical models to biochemical systems:
A design-based modeling approach. Journal of the Learning Sciences, 7(3&4): 429-449.

Portsmore, M. (1999). ROBOLAB: Intuitive Robotic Programming Software to Support Life Long
Learning. APPLE Learning Technology Review, Spring/Summer, 1999.

Resnick, M., & Ocko, S. (1991). LEGO/Logo: Learning Through and About Design. In (ed. by I.
Harel and S. Papert (Eds.), Constructionism. Norwood, NJ: Ablex.

Robins, A., Roundtree, J., & Roundtree, N. (2003). Learning and Teaching Programming: A
Review and Discussion. Computer Science Education, 13(2), 137-172.

Seitz, J. (2000). The Bodily Basis of Thought. New Ideas in Psychology, 18, 23-40.

Sklar, E. & Parsons, S. (2002). RoboCupJunior: a vehicle for enhancing technical literacy.
Proceedings of the AAAI-02 Mobile Robot Workshop.

Stein, C. & Nickerson, K. (2004). Botball Robotics and Gender Differences in Middle School
Teams. Proceedings of the 2004 American Society for Engineering Education Annual
Conference.

Suchman, L. (1988). Representing practice in cognitive science. Human Studies, 11(2-3), 305-
325.

Constructionism 2010, Paris

 12

Varela, F. J., Thompson, E., & Rosch, E. (1993). The embodied mind: cognitive science and
human experience. Cambridge, MA: MIT Press.

Wilensky, U. (2000). Modeling Emergent Phenomena with StarLogoT. Retrieved December,
2000, from CONCORD.org.

Wilensky U., & Stroup, W. (1999a). HubNet. Center for Connected Learning & Computer-based
Modeling. Northwestern University. Evanston, IL.

Wilensky, U., & Stroup, W. (1999b). Learning through Participatory Simulations: Network-Based
Design for Systems Learning in Classrooms. Computer Supported Collaborative
Learning (CSCL'99). Stanford University: December 12 - 15, 1999.

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625-
636.

Wolfgang, C., Stannard, L., & Jones, I. (2003). Advanced Constructional Play with LEGOs
Among Preschoolers as a Predictor of Later School Achievement in Mathematics. Early
Child Development and Care, 173, 467-475.

