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Abstract 
IPRO (shown below) is a mobile, constructionist, virtual robotics programming environment 
designed to teach computational literacy.  Students use a simplified programming language to 
control the behavior of a robot agent as it undertakes various collaborative and competitive 
tasks. Each student programs his/her own robots using a handheld device, and the robots 
compete on a shared stage. The project uses handhelds to encourage collaboration and 
embodied cognition through physical movement and the sharing of content while programming. 
The design is based on other robotics environments for teaching introductory programming in 
which there have been measurable learning gains (Berland, 2008; Martin, 2007; Wilensky & 
Stroup, 1999a). IPRO is structured as a participatory simulation in that students will participate in 
a constructionist shared space (see Wilensky & Stroup, 1999b).  

 

Figure 1 - IPRO Circuit and Play Modes 

Constructionist programming tasks are especially well suited to this type of collaboration 
because they involve complex, concrete tasks with a strong connection of the conceptual and 
the technical.  Students collaboratively refine their conceptual understanding by freely sharing 
their technical products. Our goal is that students in the project will approach programming as an 
active, physical task, and that they will be motivated to engage with the content as a result. The 
design of IPRO is focused on determining pathways to stronger understanding of programming 
content as well as to levels of increased motivation. 
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Introduction 
Given the computer's iconic status as the quintessential amodal, decontextualized thinking 
device, discussing embodied programming is a bit vague at best. However, if we are to 
understand computational thinking (CT) and programming from a constructionist perspective, 
considering the implications of embodied programming is essential.  
 
There is a profound disconnect between the excitement surrounding the potential of computer-
proficient youth and the actual act of programming a computer. Typically a solitary art, it often 
invokes the stereotypical image of a young man hunched over a glowing screen, and the path to 
programming proficiency is frequently presumed to demand monk-like devotion to the study of 
arcane syntax and keystrokes.  Even for computationally literate young people who happily use 
software in imaginative and innovative ways, learning programming may hold little appeal when 
pursued in solitude. Our challenge is clear: how can programming in the classroom be recast as 
engaging, inclusive, and social?  

While instruction in many disciplines has been made more active, mobile, and collaborative, 
programming instruction has resisted those advances (Ben-Ari, 2001). The goal of this project is 
to introduce an element of mobility into programming instruction and encourage students to 
collaborate as they move and congregate. We call this “Programming Standing Up”.  The 
importance of engaging and effective programming instruction cannot be understated: 
programming is “hard to learn” (Guzdial, 2004), a core thinking skill (diSessa, 2000), and a core 
job skill.  Some benefits of mobility with constructive work are also well established – Klopfer, 
Squire, & Jenkins (2002) showed that students engage in more complex problem solving about 
real world content when they are able to work together in a physical space.  

Constructionist programming tasks are especially well suited to this enhanced collaboration 
because they involve complex, concrete tasks with a strong connection between the conceptual 
and the technical.  Students collaboratively refine their conceptual understanding by freely 
sharing their technical products. Pedagogy in programming classes has often valued 
reproduction of ‘authentic’ professional practice over innovative pedagogy (Ben-Ari, 2001). 
However, as we know from Smith, diSessa, & Roschelle (1993), authentic demonstration of 
expert practice is not necessarily the best path to understanding. Our goal is that students in the 
project will approach programming as an active, physical task, and that they will be motivated to 
engage with the content as a result.  

To that end, we are developing, implementing, and deploying a constructionist mobile, 
collaborative programming platform focusing on the design, generation, and evaluation of 
algorithmic knowledge, strategies, and models; these are the basic elements of computer 
science education as described by Robins, Roundtree, and Roundtree (2003).  
 
IPRO (for both “iPod Robotics” and “I (can) program!”) is a virtual robotics environment that 
builds upon the previous designs of the authors, along with previous research on the 
development of novice programming environments (a more detailed description is below).  
Students use a robust programming language to control the behavior of a robot agent as it 
undertakes various collaborative and competitive tasks.  The design is based on other robotics 
environments for teaching introductory programming in which there have been measurable 
learning gains (Martin, 2007). IPRO is structured as a participatory simulation in that students 
will participate in a constructionist shared space (see Wilensky & Stroup, 1999b, for more 
detail).     
 
The research design around IPRO is focused on determining pathways to stronger 
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understanding of programming content as well as to levels of increased motivation.   
   

Our primary hypotheses are:  

1. Learning to program on mobile devices will lead to a greater incidence of on-task 
interaction by students with their peers as well as with the world around them.   

2. These new interactions will lead to an operationalized understanding of key 
computational concepts, and will flatten the learning curve as students move on to new 
programming environments.  

3. These new interactions will also lead to increased student engagement with 
programming.  

4. The process of learning to program standing up will be dramatically different from 
learning to program at a stationary computer.     

Constructionist Pathways to Computational Literacy 
The term computational literacy has often been used to describe proficient usage of a few 
standard desktop computer applications. For example, as a secondary school teacher, one 
author taught a class called "computer literacy," which focused on Microsoft Word, Excel, and 
PowerPoint. Papert (1980) argues that computational literacy should instead mirror ‘print literacy’ 
more closely.  The modern conception of print literacy does not stop at reading - the print 
literature individual should be able to express herself in writing as well.  As such, computational 
literacy should not stop at the ability to use computer software; rather, it should include the ability 
to create and/or manipulate computer software (or hardware) to communicate and disseminate 
ideas. The expressive and authoring aspects of computational literacy have been long ignored in 
the pre-collegiate curriculum, but a shift towards a more participatory picture of media and 
technology education is underway; this shift is supported by research while reflecting changing 
relationships between young people and technology (Jenkins, 2006).  

Much of the modern constructionist work uses computational literacy as a focus to teach 
complex content (e.g., Blikstein & Wilensky, in press). However, different forms of content and 
different sets of students are amenable to different approaches, and teaching ‘deep’ 
computational literacy is not identical to using computational literacy to teach other content (such 
as mathematics). How do we help students develop this type of deep computational literacy? 
This is a fundamental question of constructionism. Embodied cognition provides one key to 
answering this question.  

Embodied Cognition and IPRO 
Embodied cognition recognizes and tries to understand how being in a body and interacting with 
a physical world shapes and impacts the development of thinking, problem solving, and learning. 
The typical picture of programming alluded to earlier, the solitary male hunched over a computer 
monitor, seems the complete antithesis of an embodied activity.  However, programmers often 
describe the computer as an extension of themselves, as a highly responsive tool for interacting 
with the world (diSessa, 2000; A. Randall, writer of Perl 6 (O'Reilly), personal communication, 
2010).  While we will not turn our students into expert programmers overnight, we can help 
students develop programming experience in ways that might lead to this type and degree of 
proficiency.  

In placing the programming environment on a mobile device, which a student uses while 
standing up in a group of other students, we change fundamental aspects of the system 
characterizing the relationship between the learner and what is to be learned.  That system now 
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includes new pathways, such as moving one’s own body or other objects in the classroom, the 
ability to easily show other students what is happening with your simulation or with the code 
underneath it, and the ability to organize in groups that afford more direct sociability than if 
students (or pairs) are seated at individual computers. Considering some of the main themes of 
embodied cognition can help us identify implications of this changed system.  If cognition 
evolves from perception and action (Anderson, 2007; Fischer, 1980; Seitz, 2000; Varela, 
Thompson, & Rosch, 1993; Wilson, 2002), programming a robot will be easier if one can attempt 
to embody a robot during the process.  This relies in large part on possibilities for off-loading 
some cognitive work to the environment (Hutchins, 1995; Kirsh, 2008); in this case that might 
include acting out what one thinks certain commands or combinations of commands might do, 
potentially leading to better programming and clearer communication between students about 
programming. Embodied cognition claims that much less of what we do is guided by plans made 
ahead of time, and more is guided by on-the-fly tightly coupled act-plan cycles (Suchman, 1988). 
If so, the mobile programming environment affords exactly this type of work; fresh ideas can be 
explored in physical space, programmed, and evaluated in virtual space without interruption.  
This tight coupling of the physical and the virtual is important to have in mind while viewing this 
project through the lens of embodied cognition. The authors have done significant research on 
the effects of virtual versus physical environments on instruction in programming as well as 
mathematics problem solving and have found unique benefits in both cases. For example, virtual 
environments can help struggling children learn mathematics faster because children can see 
any or all steps of a problem solution as many times as they like (Martin & Schwartz, 
2005). Meanwhile, working in the physical environment is often linked to deeper conceptual 
processing and understanding (Penner, Lehrer, & Schauble, 1998). We hypothesize that the 
IPRO environment could capitalize on the benefits of both these approaches.  

Why Constructionist Virtual Robotics?  
Constructionist research suggests that IPRO will be beneficial for learning because it 
approaches learning as an active participant (Harel & Papert, 1990); embodied cognition 
research suggests how Programming Standing Up could change the nature of the programming 
task to make it more accessible.  But why do this programming in the context of robotics?   

Strong Support for Constructionism  
Robotics have been associated with constructionist approaches since its beginnings (Papert, 
1980). It continues to be a core element of many constructionist projects (e.g., Hancock, 2003; 
Portsmore, 1999; Resnick & Ocko, 1991).  As Wilensky (2000) notes, tools that utilize the 
individual components needed to complete the aggregate can both help the student understand 
the final concept but also allow the investigator to understand the process of learning.  Wilensky 
differentiates “black box” projects in which subjects begin in the middle of the process of creation 
with “glass box” projects in which subjects can see the process of creation from start to finish.  
Programmable autonomous robotics curricula provide a consummate example of this kind of 
“glass box” work. 

Significant Evidence to Suggest Learning Benefits for Math and Science  
As part of a broader initiative to improve math and science education, several thousand schools 
have implemented robotics classes and clubs for K-12 students. Anecdotal evidence about how 
robotics classes have improved student interest level, creativity, and reasoning skills are well 
documented (Genalo & Gilchrist, 2006; Lau, McNamara, Rogers, & Portsmore, 2001). Recently, 
work on the specific benefits of robotics and LEGO-like toys has been materializing. Using a 
simulated standardized math test, Lindh and Holgersson (2007) tested 996 fifth and ninth grade 
students in Sweden. They found that, for students who were slightly below average in math, 
taking robotics in 5th grade improved math test scores relative to their counterparts who did not 



Constructionism 2010, Paris   

  5 

take robotics. Wolfgang, Stannard, and Jones (2003) followed a group of 27 students from pre-K 
through 12th grade and discovered several significant correlations.  Pre-K students who were 
adept with (non-robotic) LEGO blocks went on to score high on standardized high school tests, 
took more honors and higher math courses, and had a higher weighted grade point average in 
math courses.  

Access issues  
On one hand, the immediacy and physicality of robotics would appear to make it a natural 
context for teaching programming.  Coded commands can instantly be visualized as a simulation 
during testing – following a successful test, students can program their actual robot and get the 
satisfaction of seeing their programming "come to life."  However, robotics is sometimes 
characterized as having narrow appeal, primarily to the types of students already sitting in the 
seats of our college engineering classrooms.  As such, an important element of our research 
agenda is examining how IPRO can increase participation of underrepresented groups in 
engineering. Considering girls as one of these underrepresented groups, an examination of the 
literature suggests favorable reading of how girls benefit from robotics courses and 
competitions.  Beisser (2006) reports that girls immersed in a LEGO/Logo environment 
demonstrate significant improvement in self-efficacy beliefs regarding computer use and their 
likelihood of being computer professionals in the future. Weinburg and colleagues (2007) show 
that participation in Botball competitions led to increases in both self-efficacy perceptions and 
ratings of interest in STEM careers for 7th grade girls. In a qualitative case study of girls in a 
Botball program, Stein & Nickerson (2004) found that girls were equally as interested in the 
competitive nature of the game robotics environment as boys and were not driven away by it.  

We believe this evidence suggests that the issue of equity and robotics is a real problem and 
worthy of further study, particularly in light of the widespread use of robotics activities in 
classrooms and after school clubs.  

IPRO: A Constructionist Mobile Programming Environment 
IPRO is an iPhone & iPod Touch virtual robotics programming environment and game space 
that we are developing for this project. It is made up of two fundamental components: a 
development environment (‘the board’) for the IPRO language and a shared game space (‘the 
field’) where students’ virtual robots will coexist.  

Elements of IPRO 

The Field 
The field (shown in Figure 2) is where students’ robots compete in teams, collaboratively and 
competitively accomplishing tasks and working towards goals.  Students will each design their 
own robot on the board based on challenges to come in the field. The simplest field activity is a 
variant of soccer. Soccer is a game in which several studies have shown success to scaffold 
students in robotics and computational literacy (Sklar, 2002).  
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Figure 2 - The IPRO Field 

The Board  
The board is where students program their robots using single-layer encapsulated functions. The 
language and function are similar to programming in Scheme, a programming language 
commonly used for teaching and learning (such as in the textbook by Abelson, Sussman, & 
Sussman, 1985).  

IPRO Activity: IPRO-Soccer 
The IPRO framework can be used for a variety of activities, but the initial version is designed to 
support multi-agent online games of robot soccer. There may be up to 12 robots on the field at 
any given time, divided equally into red and blue teams as they enter the game. Each team 
attempts to move the ball into the goal (both shown in Figure 3). Each student designs one 
robot, but they must work in concert with teammates in order to be successful. The benefits of 
framing IPRO activities in terms of soccer are: 

1. It is a familiar game to many teachers who have used robotics in their classroom support.  
2. There is a significant amount of outside information about strategies for both human and 

robot soccer. 
3. There is relatively rapid feedback about the success of a strategy. 
4. It scales well with robotics and can be attempted with physical robotics as well (Sklar & 

Eguchi, 2004). 
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Figure 3 – IPRO Team Play 

IPRO Language 
The IPRO language is a visual programming language based deriving from the Scheme 
programming language implementing a simple functional reactive programming paradigm  (e.g., 
Cooper & Krishnamurthi, 2006), in that it uses the concept of signals rather than constants. An 
example is shown below in Figure 4. 
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Figure 4 - IPRO Logic Flows 

The fundamental components of a program are sensors and motors. Each IPRO virtual robot 
has a symmetrical left and right version of each sensor, and it can move in one of four directions 
on a hexagonal grid each time step. The semantics of the language remain fairly simple: 

1. During each time step, a set of conditional logic branches is evaluated. 
2. Each conditional branch is true or false based on the logic of the sensors. The default set 

of sensors: 
a. ROBOT-SENSOR = Returns a value that corresponds to an inverse of the distance 

from the agent-robot to the nearest robot. 
b. GOAL-SENSOR = Returns a value that corresponds to an inverse of the distance 

from the agent-robot to the agent-robot's targeted goal. 
c. BALL-SENSOR = Returns a value that corresponds to an inverse of the distance 

from the agent-robot to the nearest ball. 
3. The output of the conditional logic must necessarily be some action in the virtual space: 

MOVE-FORWARD-LEFT, MOVE-FORWARD-RIGHT, MOVE-BACKWARD-LEFT, 
MOVE-BACKWARD-RIGHT, or TURN-RIGHT. 

 
There are several important differences between IPRO and Scheme.  

1. IPRO is significantly simplified, only using those primitives that are relevant to an activity.   
2. IPRO is constantly evaluated, so that the student can see the effects of her program 

immediately and make changes accordingly. 
3. No Syntax or symantic errors are possible – all possible programs compile.  However, 

they may not all be relevant to an activity. 
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Understanding & Modeling the Process of Learning to 
Program  
The IPRO environment presents a unique opportunity to model how students learn and 
collaborate effectively in the classroom. By collecting data on how students share programs and 
programming wisdom with each other using their handheld devices, we can, over time, 
characterize the collaboration that happens as well as create predictive models.  

These novel forms and structures of data, along with the analysis, visualization, and modeling 
techniques we propose, have not heretofore been accessible to school-based studies. Berland 
(2008) uses multi-agent network theory to illuminate both qualitative/exploratory data and 
quantitative performance data in mixed-methods studies (using the model from Abrahamson, 
Blikstein, Lamberty, & Wilensky, 2005), but thus far the resources available thanks to the cyber 
infrastructure of mobile hardware (GPS, short-range wireless connections, and custom 
applications) have not been utilized to map and model collaboration.  

IPRO collects data not only on students' individual programs but on how they share specific 
parts of those programs. A concrete example of how this might look in a robot soccer game 
follows:  

1. Juliana builds program to search for the soccer ball. Her program includes three 
functions, one of which checks to see if the robot is pointed in the correct direction 
("correct-direction?").   

2. Maria is building a striker, but her striker should only target the correct goal, so she asks 
Juliana for help. She walks over to Juliana and asks to use her "correct-direction?" 
function.  

3. Juliana shares the function with Maria by utilizing the "share" button on her interface.  
 

All of this data is logged by the system, so we can follow the sharing as it happens see who is 
collaborating with whom. We can analyze this data statically as well as dynamically.  

Conclusions    
Like engineering, programming in the classroom does not lend itself to clean cycles of textbook-
administered instruction and assessment.  However, as computational and systems-thinking 
skills become increasingly vital, understanding and improving how they are learned has become 
a necessity.  As such, our paper addresses areas of both educational theory and practice. This 
study is designed to innovate the experimental study of embodied cognition theory as well as 
use constructionist robotics to better understand the collaborative learning process.  Our goal is 
to reconsider programming instruction and generate testable, predictive models to usefully guide 
future research. Positive findings will contribute to improving the practice of computer science 
instruction in the classroom by demonstrating improved learning outcomes in core content areas 
and presenting programming as an engaging activity for all learners.   
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