
Constructionism 2010, Paris

 1

Exploring Elements of Linear Algebra through
Experiments with LOGO

Karl Josef Fuchs, karl.fuchs@sbg.ac.at
Department of Mathematics and Informatics Education, University of Salzburg

Hans-Stefan Siller, hans-stefan.siller@sbg.ac.at
Department of Mathematics and Informatics Education, University of Salzburg

Abstract

In terms of constructionism knowledge and skills are internalized activities. Teaching following
this approach has turned out to be efficient at any stage of life. This paper discusses the design
of a course for the introduction of Linear Algebra at secondary level combining Mathematics and
Computer Science. The way to gain basic elements does not head to traditional definitions and
subsequent exercises but turns the path almost upside down. Constructing, experimenting and
exploring are at the beginning. The implementations of LOGO functions should open up and
produce deeper insights into basic elements of Linear Algebra by the students.

Keywords

Mathematics, Computer Science, Linear Algebra, Constructing - Experimenting - Exploring,
LOGO Functions, Transfer, Analogy, Inner Differentation

Constructionism 2010, Paris

 2

Prelude to the Constructionistic Approach

If you are skimming over the titles of our paper you may receive the impression of huge
inconsistancy. Apparently we want something from Elements of Linear Algebra like vectors and
matrices which are largely regarded as extremly abstract objects. Otherwise we address
exploring and experimenting as appropriate strategies to discover these abstract basic ideas.
With the following concept we want to demonstrate that constructionistic thinking (Papert 1993;
Papert, Solomon 1971) overbears seemingly even such opposed gaps.

We do not conceal on the fact that through this approach with the support of computers in
particular through the use of LOGO, LISP and CAS Mathematica we have taught many highly
motivated students in computer classes at grammar school from age 16 to 18 and teacher
students in Mathematics and Informatics at age 19 at the university for a couple of years with the
result of a profound knowledge of elementary data – structures on one hand and of Elements of
Linear Algebra on the other hand finally.

All implementations in this contribution are made in MSW LOGO in terms of uniformity,
adaptations in LISP and CAS Mathematica® can be set up easily.

Wading through the Course’s Design including students’
monitorings

Atoms, Lists and Functions – Assembling and Disassembling

At the beginning all the students are informed of the data structures used in LOGO. Easy
examples carried out by students in groups deal with manipulations on atoms and lists using
the functions word and sentence for assembling and first, butfirst (bf), last, butlast (bl) for
disassembling. Additionally the functions wordp and listp are used for checking the outputs. All
the inputs are executed immediately after entering the code into the Command line.

The following section shows a work – sheet of average level of difficulty the students have to
work with cooperately.

Given: [[1 2] 23 [24,25]]

 Combose the given list!
 Extract

 the element 2 as a list,
 the element 23 as a word and
 the word 2425 from the given list!

Possible solutions are:

show [[1 2] 23 [24 25]]
[[1 2] 23 [24 25]]

show bf first [[1 2] 23 [24 25]]
[2]

show first bf [[1 2] 23 [24 25]]
23

show word first last [[1 2] 23 [24 25]] last last [[1 2] 23 [24 25]]
2425

Some of the students solved the last problem in two steps

show last [[1 2] 23 [24 25]]
[24 25] and then

Constructionism 2010, Paris

 3

show word first last [[1 2] 23 [24 25]] last last [[1 2] 23 [24 25]]
2425

which is absolutely reasonable as they want to ensure themselves of the object which they will
be disassembling further.

Vectors and Matrices

Definitions and Basic Attributes

In the following it remains to be seen that the elements of Linear Algebra can be obtained from
the fundamentals in the first work – sheet by the strategies of Transfer (Schubert, Schwill 2004)
and Analogy (Herber, Vásárhelyi 2002) which are important for Constructionistic Thinking.

Hence the outcome of a consequent implementation of the concept for the methodology is as
follows. In one respect the teacher must namely be the guider of the course as he owns the
professional and educational competences. He develops work – sheets for each step of the
course presented in the following with permanent regard to the learning process of the students.
In short: During the construction process of the students the teacher withdraws from the
classroom union and gives support individually in the other respect (Fuchs 2007, p. 183).

We will call elements like [1 2 3] or [-2.3 0] vectors of dimension three respectively of

dimension two. Generally we will call x1 , x2 , … , xk vectors of dimension k.

Immediately we have to cope with a new problem. What does the attribute dimension address?
Very soon the students will find out that the dimension equals the number of elements of the
vector.

The predefined LOGO function count satisfies our problem. The students can find out the
dimension of a vector easily. For example typing in

show count [-2.3 4 5.75]

into the Command Line will yield 3 which is the correct answer.

Gradually we define elements like [[1 2 3][4 5 6][7 8 9]] or [[1 0][0 1]] as 3 3 respectively 2 2

matrices. Generally we will call

𝑥11 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑚1 ⋯ 𝑥𝑚𝑛

 m n matrices.

The next steps are up to the students’ responsibility in a broader extent.

The first task will soon be done by the students namely to show the relation between the ‘list – of
– lists’ – representation such as [[1.5 3.43][2.756 3.1]] and the common symbolic ‘mathematical

representation’
1.5 3.43

2.756 3.1
 .

But when using the count function again the students soon become aware that for example

show count [[2 3][4 5]]

yields 2. A result which is absolutely justifiable by the students – two lists are the elements in the
given list – but it is not adequate for matrices.

So the second task will be more difficult. Analysing the definition the students will answer the
question according to the dimension of a matrix by bringing in the number of rows and the
number of columns for a new definition of the attribute. We agree to this statement but for this
reason the dimension of a matrix must be splitted into a row – dimension and a column –
dimension consequently. Now the students’ big challenges consist in the construction of a dim
– module for matrices.

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=methodology&trestr=0x8001

Constructionism 2010, Paris

 4

Additionally we want to introduce the Programming – (Editing) Mode of MSW LOGO and the
concept of the parameter or variable in LOGO.

Empirically this implementation necessitates some time for experimenting to become familiar
with the Editing Mode. Most of the students will approach by ‘trial and error’ when modifying the
code in the edit – window. Only few of them focus on structuring the design before entering the
code. Never astonishingly these students reach the desired implementation more quickly.

to dim :mat
op sentence count :mat count first :mat
end

Further Attributes

We sustain our course by going on the explorations of further properties of the elements vector
and matrix.

Forces, velocity and acceleration are terms the students know from their Physics lessons. The
Natural sientist uses vectors to describe such concepts. We take advantage of these
interdisciplinary aspects in our concept.

As a matter of course the students argue that all these vectors are characterized by two
informations, one is the direction the other the absolute value of the term. We will focus on the
second one.

We will solve the problem by transferring it to Geometry and then by stepwise refinement.

The two dimensional problem:

Figure 1. Length of vector u

Figure 1 suggests that the absolute value c of vector u can be found by the Pythagorean

Theorem easily: 𝑐 = 𝑎1
2 + 𝑏1

2, where 𝑎1 = 𝑏𝑦 − 𝑎𝑦 and 𝑏1 = 𝑏𝑥 − 𝑎𝑥 .

The solution for the three dimensional problem should be devolved by the students.

Constructionism 2010, Paris

 5

Although the generalization 𝑐 = 𝑢1
2 + 𝑢2

2 + … + 𝑢𝑘
2 (with 𝑢1 = 𝑏𝑥1

− 𝑎𝑥1
, 𝑢2 = 𝑏𝑥2

− 𝑎𝑥2
, … ,

𝑢𝑘 = 𝑏𝑥𝑘
− 𝑎𝑥𝑘

) is beyond graphical representation the expression is accepted by the students

willingly.

But now our interest concentrates on the LOGO implementation of the attribute.

Already from this stage on we use the widely unfamiliar LOGO functions MAP and APPLY for
the manipulations of our lists (vectors). Once again we can avoid recurrent value assigments
(Fuchs, Siller, Vasarhelyi 2008).

to abs_val :v
op sqrt apply "sum map [? * ?] :v
end

We will test our function to err on the side of caution:

pr abs_val [2 3 4]

yields

5.3851648071345

which can easily be checked as the right answer.

But we can also discover further attributes for matrices. We want to pick out the symmetry. On
one hand we choose this property as it is of notably importance when teaching algorithms. More
efficient strategies can be gained when adjacency matrices which represent the implementations
of graphs are symmetric. On the other hand we settle on this attribute as we will come across
with another interesting module namely x on the way to the final implementation of symmetry.

So let’s go back to the problem. A matrix is symmetric when it fits in with its transposed

matrix which evolves by mirroring the elements on the main diagonal 𝑥11 , 𝑥22 , … , 𝑥𝑘𝑘 .

Although this attribute sounds very repellent the students will have no problem with it as some of
the students’ comments like symmetric matrices must be quadratic give evidence to our
statement.

Hence we will implement a LOGO transpose function first. Investigating a reduced problem – a
symmetric 3 3 matrix

𝑥11 𝑥12 𝑥13

𝑥21 𝑥22 𝑥23

𝑥31 𝑥32 𝑥33

Figure 2. symmetric 3 x 3 matrix

we will find out that the strategy will be to generate a new matrix where 𝑥𝑖𝑗 = 𝑥𝑗𝑖 for i, j = 1, 2 3.

We are satisfied with the algorithm and generalize it for i, j = 1, 2, .. k but the implemetation of
this strategy makes a most interesting new module necessary. We will call it simply x.

x will be a selector function in the two parameters :i and :j using the predefined LOGO item
function. In doing so x : i :j addresses the element 𝑥𝑖𝑗 in the matrix :mat.

to x :i :j :mat
op item :j item :i :mat
end

The implementation of the module to check the symmetry brings in some very challenging new
ideas which must be explored in a dialogue between teacher und students. Thereby a main

http://dict.leo.org/ende?lp=ende&p=thMx..&search=to
http://dict.leo.org/ende?lp=ende&p=thMx..&search=err
http://dict.leo.org/ende?lp=ende&p=thMx..&search=on
http://dict.leo.org/ende?lp=ende&p=thMx..&search=the
http://dict.leo.org/ende?lp=ende&p=thMx..&search=side
http://dict.leo.org/ende?lp=ende&p=thMx..&search=of
http://dict.leo.org/ende?lp=ende&p=thMx..&search=caution
http://dict.leo.org/ende?lp=ende&p=thMx..&search=adjacency
http://dict.leo.org/ende?lp=ende&p=thMx..&search=matrix

Constructionism 2010, Paris

 6

focus rests on the control structure of conditional branching that comes along with the
recursion.

to symmetry :mat :row :col
if equalp dim :mat sentence :row :col [op "true]
if not equalp x :row :col :mat x :col :row :mat [op "false]
if not greaterp :row first dim :mat [if lessp :col last dim :mat [op symmetry :mat :row :col+1]]
op symmetry :mat :row+1 1
end

When discussing the LOGO source code the main focus will be on the two conditions if equalp
dim :mat sentence :row :col [op "true] and if not equalp x :row :col :mat x :col :row :mat [op
"false]. Such conditions are essential in programming recursive functions to avoid infinity in
executing. Empirically they are often ignored by the students.

We are satisfied with the module as

show symmetry [[1 -2 3][-2 4 0][3 0 5]] 1 1

yields

true

whereas

show symmetry [[1 -2 3][-2 4 1][3 0 5]] 1 1

outputs

false.

We expect that our severe philosophy in implementing the code did not escape the attention of
the reader as we strictly avoid value assignments using make. Our intention is to show the
students that these commands which they know from courses in imperative programming very
well are not necessary for a consequent functional programming style.

Discovering Operations

Exemplarily we will discuss some operations with vectors and matrices. Constructionistic
Thinking in this case means that we will not define the operations traditionally but gain them by
experimenting and playing.

Our first example is about the similarity of documents. Although the solution of the following
problem is well – known in Information Theory this fact is not communicated to the students.

The modelling process will start with the question how to indicate the similarity of a document.
After some discussions we agree upon the strategy to bring the absolute frequency of some
relevant terms in the document into account for similarity.

We decide to describe each document by a vector with the absolute frequencies as its
components. [1 5 0 0 1 2 8 1 0 1] will be an implementation for a document where the number of
relevant terms n equals 10.

After some further continuative discussions with the students we decide to multiply the according
elements of two documents (= vectors) and sum up these products finally. Hence the output
sum is a rate for the similarity of the two documents.

Main arguments for this solution are:

 If the absolute frequency of a relevant item equals zero then the result will be zero
regardless of the value of the other factor.

Constructionism 2010, Paris

 7

 If the absolute frequency of a relevant item equals one then the value of the other factor will
be the value of the product.

 If both values of the absolute frequencies of the relevant items are bigger than one then the
value of the product will be bigger than the value of each factor.

Now we are prepared for the LOGO implementation which should be done mainly by the
students.

to similarity :v1 :v2 :pv
if equalp :v1 [][op apply "sum :pv]
op similarity bf :v1 bf :v2 fput product item 1 :v1 item 1 :v2 :pv
end

Finally we nominate this operation with vectors inner product or scalar product and test the
module. The results are very satisfying.

show similarity [1 5 0 0 1 2 8 1 0 1] [0 4 0 1 1 3 5 0 4 1] [] yields 68 and
show similarity [1 5 0 0 1 2 8 1 0 1] [5 0 4 3 1 2 1 0 5 0] [] outputs 18.

Even if we only fly over the inputs we will consider the first two vectors as more similar than the
second ones.

The second example will bring us to the matrices and it may be called metamorphoses.

We start with a square. It is a magic one as the sums of all its rows, columns and diagonals
equals fifteen.

2 7 6
9 5 1
4 3 8

Figure 3. Magic Squares

The square will be implemented as matrix.

Now the students’ problem is to create a new 3 3 matrix by multiplying all the rows’
permutations of the given square. For the further process it is indicated to name the matrices
with A which is the original magic square and B, C, D, E and F for its rows’ permutations.

AA AB AC AD AE AF

BA BB BC BD BE BF

CA CB CC CD CE CF

DA DB DC DD DE DF

EA EB EC ED EE EF

FA FB FC FD FE FF

Table 1. Magic Square Permutations

Back order the question ‘What do we mean by multiplying two matrices?’ is still open.

After some discussion we stick back to the knowledge that each row or column is a vector. In
the example before we became acquainted with the scalar product expressed in the similarity
module.

Constructionism 2010, Paris

 8

x11 x12 x13

x21 x22 x23

x31 x32 x33

 ∙

y11 y12 y13

y21 y22 y23

y31 y32 y33

 =

x11 x12 x13

x21 x22 x23

x31 x32 x33

Figure 4. Identifying the scalar product

So let us implement the already existing module as a new function for the product of two
(quadratic) matrices.

to metamorph :mat1 :mat2 :mat3 :i :v
if :mat1=[][op :mat3]
if greaterp :i 0 [op metamorph :mat1 :mat2 :mat3 :i-1 fput similarity last :mat1 pick_out
:mat2 [] :i [] :v]
op metamorph bl :mat1 :mat2 fput :v :mat3 3 []
end

with

to pick_out :mat :v :i
if :mat=[][op :v]
op pick_out bl :mat fput item :i last :mat :v :i
end

Only the students with outstanding abilities in functional programming are able to implement this
LOGO module. Nevertheless there is enough room for all the students to participate when
recapitulating the given problem.

Now the additional task is not only to generate the permutations of the given magic square but to
find out that some new generated matrices will be symmetric such as C B with

𝐵 =
4 3 8
9 5 1
2 7 6

 and 𝐶 =
9 5 1
4 3 8
2 7 6

 .

show metamorph [[9 5 1][4 3 8][2 7 6]] [[4 3 8][9 5 1][2 7 6]] [] 3 []

yields

[[83 59 83] [59 83 83] [83 83 59]]

Finally we use our already discovered symmetry module for automatic testing.

show symmetry [[83 59 83] [59 83 83] [83 83 59]] 1 1
true

Final Short Perspectives on the Constructivist Approach

The main intention of our paper was to put the design of a different course which is partly going
beyond Mathematics and Computer Science in school up for discussion. LOGO looms large in
the concept which is rigid in no case but very open. It leaves multitudinous possibilities of
constructionistic acting to committed teachers namely be it the discussion of additional attributes
and operations as well as the introduction of further basic elements of Linear Algebra such as
the determinant.

Furthermore the course offers numerous opportunities for inner differentiation wherewith
teachers are able to make the grade to different levels of achievements through activities
adapted to the students’ capacities.

Constructionism 2010, Paris

 9

References

Fuchs, K. J. (2007). Fachdidaktische Studien. Shaker Verlag, Aachen.

Fuchs, K. J.; Siller, H. – S.; Vásárhelyi, É. (2008). Informatics With Casio CP 300+. CASIO
Europe GmbH, Norderstedt.

Herber, H. – J.; Vásárhelyi, É. (2002). Das Unterrichtsmodell „Innere Differenzierung
einschließlich Analogiebildung“ – Aspekte einer empirisch veranlassten Modellentwicklung. In
Salzburger Beiträge zur Erziehungswissenschaft 6, Nr. 2, pp. 5−19.

Papert, S. (1993). Mindstorms – Children, Computers and Powerful Ideas. 2nd Edition Basic
Books, New York.

Papert, S.; Solomon, C. (1971). Twenty Things To Do With A Computer. MIT, A. I. Laboratory, AI
MemoNo. 248, LOGO Memo No. 3.

Schubert, S.; Schwill, A. (2004). Didaktik der Informatik. Spektrum Akademischer Verlag,
Heidelberg.

