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Abstract  
Understanding how and why systems change over time is a powerful way to make sense of our 
world. By modeling those systems, learners have the opportunity to consider how their own 
actions influence that world, and to make predictions and recommendations for the future. But 
often, the notion of change is as complex as it is powerful – populations, global temperatures, 
and economic trends all represent multiple events and actors, but are measured in terms of only 
a few quantities. In this paper, we discuss the motivation and design of DeltaTick, an extension 
to the NetLogo (Wilensky, 1999) agent-based modeling environment that allows learners to 
easily construct and analyze models of complex quantitative change. To do so, they define 
models using agent behavior-based units, rather than the rate-based units typical of equations or 
systems dynamics models. They can then explore, compare, and annotate model results to 
investigate how their behavioural models relate to typical equation-based representations. 

 

 Figure 1.  Constructing (left) and analyzing (right) models using DeltaTick 

Our design is rooted in constructionism (Papert, 1980), and integrates work on complex systems 
education (Wilensky & Resnick, 1999), low-threshold agent-based modeling (Kahn, 2007; 
Repenning & Ambach, 1997), representational infrastructure shift (diSessa, 2001; Kaput et al, 
2002), and intuitive calculus (Kaput, 1994; Nemirovsky et al, 1993; Stroup, 2002). It leverages 
what Wilensky and Papert (2006; In Prep) refer to as restructuration: re-encoding of disciplinary 
content with a new representational technology to emphasize different properties of that content. 
We argue that by constructing and interacting with agent-based models, learners can recognize 
the relevance of ideas of change and variation to learners’ own experiences as actors and 
observers in their world, and the learnability of some core concepts of change and variation.  
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Restructuring Change 
We want to give learners a way to critically think about how they influence and are influenced by 
large-scale, systemic changes in their world. DeltaTick is a simple, extensible construction and 
analysis toolkit to support this goal by leveraging recent findings regarding how people think and 
learn about quantitative change. In this paper, we describe the motivation for the DeltaTick 
environment, discuss some of its design features, and briefly review interviews with learners who 
used a preliminary version to construct and explore alternative models of population growth. We 
argue that by providing learners with tools and activities that allow them to express notions of 
rate and accumulation as the outcome of specific individual behaviors as they occur over time, 
learners can model and explore quantitative change in a way that (a) emphasizes its relevance 
to their own lives by leveraging their own experiences of actions and change in the world, and 
that also (b) provides a novel access point to many of the ideas of mathematical change as they 
exist in more typical calculus and differential equations-based representations (namely, notions 
of derivative, integral, and the reversibility of the two).  

The theoretical and design contributions of this work are threefold. First, we are exploring a 
design space that provides learners a low-threshold entry point to building flexible, personally 
relevant scientific and mathematical models while still having the opportunity (and, as we argue 
in this paper, encouraging) more sophisticated model refinement. Second, we are leveraging 
and contributing to existing work on learners’ experiences and understanding of quantitative 
change, but in the specific context of change in complex systems, where multiple interactions 
and events are embedded in only one or a few measured trends. Finally, we are exploring the 
role of tools for the analysis of student artifacts in constructionist environments – such that those 
tools and learners’ own artifacts serve as a bridge to typical representations of disciplinary 
content. In terms of practical contributions, we are working toward providing learners with a 
viable, intellectually honest alternative to symbolic calculus for modeling mathematical change, 
while at the same time providing a potential bridge to more typical calculus-based concepts. Our 
goal is to present the mathematics of change as a relevant, accessible, and empowering tool 
that can help learners understand and predict their world. 

Motivation 
Examining rates of change over time and their accumulations have become some of the most 
ubiquitous practices in not only the natural and social sciences (AAAS, 1991), but also for 
navigating modern society (Roschelle et al, 2000; OECD, 2006). Often, however, the 
quantitative trends used to explore economic, environmental, or social phenomena reflect large-
scale, systemic processes that involve and affect a number of actors and events. In this sense, it 
is not just understanding quantitative change, but also understanding how that change reflects 
the events and interactions of a given system that helps us to make sense of the world and our 
role as citizens within it.  

Shifting representational infrastructures - and specifically, computational tools that represent and 
simulate processes over time - reflect a powerful way of exploring, thinking about, and simulating 
change over time - and potentially, for allowing more people to do so (Papert, 1980; diSessa, 
2001; Kaput et al, 2002). Agent-based modeling (ABM; Langton, 1997; Wilensky & Resnick, 
1999) is one example of a computational representation appropriate for modeling complex 
systems such as those described above. This technology models a phenomenon by encoding 
the behaviors and interactions of individual agents or elements of a system (for instance, the 
rules that govern motion and collision of particles in a gas), and then simulating that system by 
having a collection of those agents execute those behaviors over time (for instance, to illustrate 
how that gas exerts pressure on a container; Wilensky, 2003). It has fundamentally changed 
how scientific content is represented and explored, as well as who can author and interact with 
that content (Blikstein & Wilensky, 2009; Levy et al, 2004; Sengupta & Wilensky, 2008).  
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But while building and interacting with agent-based models can help learners develop a more 
deep and generative understanding of traditionally advanced content, less is known about how 
they link this understanding with more conventional representations of those concepts - namely, 
algebraic and calculus-based equations. This project explores how ABM can serve as an access 
point to the mathematical aspects of complex phenomena and the ways they connect with the 
mechanisms and patterns those mathematics represent. To do so, we leverage Wilensky and 
Papert's (2006; In Preparation) notion of a restructuration: a re-encoding of existing disciplinary 
knowledge using a new representational technology that emphasizes different aspects and 
properties of that knowledge. In other words, we are exploring how agent-based modelling can 
be used to provide learners with a new language to "speak" and practice quantitative modeling. 

In the following sections of this paper, we describe in more detail the notion of restructuration, 
and make the case for how agent-based modeling can provide learners with more access points 
to not only specific scientific content, but also to the mathematical representations typically used 
to present that content. Next, we describe a set of computational tools to provide learners the 
opportunity to build and explore agent-based models with explicit focus on how those models 
represent mathematical change over time; along with a short description of the sort of activities 
that would give learners the opportunities to use these tools meaningfully and constructively. 
Finally, we discuss some of the specific design features of this environment in the context of 
preliminary interviews with learners using earlier versions of these tools. We argue that these 
findings suggest that constructing and analyzing agent-based models with specific attention to 
ideas of change and variation in systems helps learners to understand the relevance of ideas of 
change and variation in their own lives, as well as makes many difficult concepts in change and 
variation (such as the reversibility of rate and accumulation) more learnable for learners. We 
conclude with a brief discussion of future work and implications. 

The Computational Restructuration of Mathematical Modeling 
We base our motivation for the design of DeltaTick within the framework of restructuration theory 
(Wilensky & Papert, 2006; In Prep.) – that different technologies can encode the same 
disciplinary content, but in ways that emphasize very different aspects and properties of that 
content. While some structurations or encodings of knowledge – for example, using 
mathematical or agent-based representational systems – are more or less appropriate for some 
goals or make certain content more accessible and usable, we contend that each can also 
complement and inform and understanding of the other. Below, we use a figure to illustrate how 
agent-based modeling (and more generally, computational behavior-based simulation) can be 
viewed as a restructuration of the ideas of change and variation (boxes 1 and 2), and how it can 
inform more typical rate-based representations by providing an opportunity to coordinate the 
results of each through the plots or numerical results they generate (boxes 2 and 3). Although 
the figure is informed by work on mathematical modeling (Niss, et al, 2006) in the sense that a 
"real situation" is distilled and then formalized into some symbolic notation, we heavily adapt it 
here to reflect that those situations can be differently conceptualized, that different 
conceptualizations can be more or less commensurate with a given symbolic encoding, and that 
symbolic encodings can be mathematical or computational. We are also careful to note that 
while we are highlighting the connections that are emphasized through the activity of modeling, 
this is not a clean process - connections can be made between or within any world, depending 
on the similarities recognized and actions taken by the modeler (Pozzi et al, 1996; Noss et al, 
1997). 

The box to the left represents a "real world" representation or experience of some dynamic 
system - for instance, trends in unemployment as a student may experience them as he reads a 
newspaper article, or searches for a summer job. Those experiences and understandings that 
are viewed as the key elements, events, trends, or patterns for a particular phenomenon of 
interest (in this case, unemployment) can be considered together as a “situation model”. In the 
case of unemployment, an individual may think of his own and his friends' experiences in the 
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workplace; but he may also consider a recent history of rising unemployment, or of national or 
international trends in consumer spending. These different ways of conceptualizing the causes 
and effects of a changing system are more or less appropriately represented by different symbol 
systems - agent-based modeling, for instance, is more appropriate for encoding individual 
experiences and interactions; while a differential equation or system dynamics model is more 
appropriate for considering larger-scale patterns and historic trends. Each restructuration, 
however, can generate results that can be compared and coordinated with one another – so that 
encodings in one structuration (the specific circumstances that lead to an individual getting or 
losing a job) can be compared to those in another (increases and decreases in employment 
levels), and the relationships between them interrogated (as more people are hired, they are 
able to spend money, which in turn allows more companies to hire more employees).   

  
Figure 2. Restructurations are alternate encodings of the same content, with each encoding emphasizing 

different aspects of that content. 

As a result of this shift, agent-based modeling encodes and reflects quantitative change in a way 
that includes a clear link to specific real-world behaviors that change can represent, as well as 
emphasizes notions of randomness, sensitivity to local conditions, non-uniform distributions, and 
other powerful ideas characteristic of systems that are not dealt with in traditional calculus. It 
also provides learners an easy to way to manipulate that encoding in ways they find interesting. 
On the other hand, this encoding de-emphasizes many of the powerful aspects of typical 
calculus-based methods, such as the ability to optimize, quickly apply solutions to new and 
different contexts or scenarios, or quickly compute specific solutions. We argue, and provide 
evidence below, that it is the transition between different structurations – including the practice of 
building models in each in order to explore and resolve conflicts between them – which is where 
a lot of learning can happen around the mathematics of change. In this sense, the plots and 
numerical results produced by each serve as a bridging tool (Abrahamson & Wilensky, 2007) for 
access to and from typically advanced mathematical and computational concepts. 

The DeltaTick Modeling Toolkit 
The main goal of our project is to provide learners an easy way to construct models of changing 
real-world systems, and then to analyze those models with specific attention to one or a few 
quantities that are typically used to represent that change. 

Constructing Models 
To build a model, learners begin by defining one or more types of actors, a collection of 
homogeneous entities that all behave similarly. A window on the construction screen represents 
each actor type. Learners can then add to those actor windows one or more pre-specified 
behaviors that each actor of that type will execute during each unit of simulated time or “tick”. 
Behaviors can also be placed inside of conditions, which limit the conditions under which each 
agent performes that behavior happen. Finally, learners can add one or more graphs, also 
represented by a window, to the screen and add one or more quantities of interest that they wish 
the graph to feature. Finally, users have the option to move to an “advanced” version of the 
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model by clicking on the “Code” tab that allows them to view and modify the text-based NetLogo 
code that underlies the visual representation – which allows them much more flexibility and 
generativity than the visual language alone. In Figure 3 below, a user has constructed a model 
that will start with 100 “people” agents. These agents will each wander around the world, and 
during any time unit that they encounter another agent nearby (if partner-here?), they will have a 
5% chance to reproduce. They also each have a 1% chance of dying during each time unit. The 
model includes two graphs: one of the total population of agents (Population), and one of the 
number of agents added (born) or subtracted (died) from the system (Births/Deaths). 

 

Figure 3. The DeltaTick construction interface. Blocks are designed such that different combinations 
correspond to markedly different resulting mathematical patterns. 

The behavior blocks that appear for learners in this environment are loaded into the environment 
as sets of “behavior libraries”. Above, a “Population Growth Library” is featured. This library 
includes individual-level instructions that can affect population growth patters: such as 
reproduce-with-probability, die-at-age, or wander. It also includes some conditions under which 
these behaviors might occur for an individual and that might also affect the population growth 
trajectory: such as if partner-here?, or if enough-space? (which both affect population growth 
trends in different ways depending on the density of agents in the world). These libraries are 
written as xml files that can be imported into the DeltaTick environment, so they are authorable 
and modifiable. This environment is inspired by Kahn’s microbehaviors (2007) and Repenning’s 
Behavior Composer (2000), in that behaviors are encapsulated and portable across agents, and 
that new behaviors can be written and added to the library. However, the behaviors in a given 
library are be designed for specific disciplinary explorations and to relate to specific potential 
mathematical patterns, and in that sense are more specific than the behaviors featured in 
behavior composer, and larger-grained than microbehaviors. This is intended to preserve a more 
direct relationship between the addition or removal of each behavior block and changes in the 
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resulting mathematical patterns generated by the model, as well as to provide a considerably 
"low threshold" access point to model construction. 

Analyzing Models 
After building a model, learners have the opportunity to analyze it using the HotLink Replay tool, 
which includes a visualization of the model and the resulting graphs. These two representations 
are dynamically linked, so that learners can click on an area of a graph and see its 
corresponding point in time in the simulation, or play the simulation over time as a cursor 
indicates the corresponding area on the plot. Learners can also highlight any intervals on a plot, 
and annotate that interval. In addition to plots and visualizations, the environment also calculates 
a user-defined piecewise linear approximation of change on any interval of a featured graph. 
Figure 4 below features three consecutive runs of the model illustrated in Figure 3. The user can 
switch back and forth between visualizations of each different run of the model; the plot for the 
specific run that they are visualizing is black and the rest are grey. Below, an interesting feature 
of the current graph – a point during which the population rose despite a general downward 
trend – is highlighted in green, and a short annotation is attached to the highlight. The user has 
also clicked on this interesting point on the graph, so that the visualization itself displays what 
was going on at that time during the model’s execution. Since the model was constructed such 
that people reproduce only if they find a partner nearby, this plot shows an increase in population 
while there are clusters of many individual agents together, emphasizing the relationship 
between specific model rules and the trends that can result from those rules. 

 

Figure 4. The HotLink Replay interface. Learners can replay, annotate, and compare different model runs. 

HotLink Replay is inspired by environments that have enabled learners to develop more robust 
understandings of rate and accumulation by providing them a means to control a phenomenon 
that produces change (Kaput, 1994; Wilhelm & Confrey, 2003); interact with plots of change and 
rate of change over time (Confrey et al 1997); and make linkages between intervals and shapes 
of plots and the events they represent (Yerushalmy, 1997).  

DeltaTick Activities 
It is not within a tool, but in a student’s use of, interaction with, and discourse around tools and 
activities where learning happens. As such, we argue the our design provides learners with the 
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opportunity to engage in the activities and ways of thinking that can help them understand 
change in their world, view it as relevant to their own lives, and learn the powerful underlying 
concepts that are so ubiquitous in the natural and social sciences, as well as everyday life.  

 

Figure 5. Graph-Matching activities encourage students to consider how  
different behaviors interact to produce a trend.  

Activities we have found to be particularly productive for learners as they interact with this 
environment are to describe how patterns that do not emerge as a result of conventional 
mathematical notation can exist in an agent-based model and what those patterns mean (for 
instance, why the number of births in a population can fluctuate upward and downward even 
while the overall pattern of growth appears exponential); construct a specific agent-based model 
that they believe will create graphs that match graphs that we or their peers provide (akin to “my 
graph rules” activities; Wilensky & Abrahamson, 2006); research topics of interest within the 
domain of population trends using public scientific data on the behaviors and trends that 
characterize populations and use that data to create an agent-based model; find mathematical 
functions that approximate the quantitative trends produced by their own models; and 
hypothesize how different behaviors in their model correspond (or do not correspond) to different 
elements of the mathematical models conventionally used to represent population growth. As 
our collection of behavior libraries grow, different activities may emerge for different domains. 

Student Interviews 
To explore whether an approach such as the one above was feasible, as well as to explore our 
hypothesis that agent-based modelling can provide learners a new and productive means to 
engage with and think about mathematical content, an early, text-based version of the 
construction tools described above were introduced to 10 U. S. high school learners (ages 15-
17) during semi-structured clinical interviews in Summer 2009. In this section we will briefly 
describe some examples of how learners (a) recognized agent-based modeling a way to explore 
specific, personally-relevant questions about population growth, and (b) connected mathematical 
notions of rate, accumulation, and the relationship between the two to model behavior. 

Relevance: Meaningful Modeling and Extension 
One of the questions we were most interested in was whether building models using a set of 
prespecified behavior-based units allowed learners to recognize the flexibility of this modeling 
language and the applicability of notions of change and variation to real-world systems. During 
our interviews, we encouraged learners to modify a simple, exponential model of population 
growth we initially provided them (in which agents each simply had a 1% chance of reproducing 
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for each iteration of time) in any way they chose. When given this opportunity, 7 out of 10 
learners added behavior parameters or behavior sequences in a way that they explicitly related 
to real-world behaviors, or included real-world constraints: for instance, learners explicitly 
mentioned issues of life expectancy (Interview 7) and the heterogeneity of life expectancy 
(Interview 8), family planning (Interview 11), and the role of age in partner selection (Interview 3), 
or the fact that many factors interact to produce patterns in a “nation or city” (Interviews 8 and 9). 
Many of these factors are ones that are difficult to include in conventional mathematical models. 

In addition to constructing models that they find relevant and applicable for thinking about the 
world, we are also interested in making it easier for learners to think about extensions to their 
model, rather than only using what is available in the pre-specified library. In our interviews, 4 
out of 10 learners explicitly suggested new behaviors they wished to add the their models that 
were not available, and 3 of those learners actually wrote NetLogo code with the to create new 
behaviors they could add to their models (no learners had prior experience with NetLogo). 

Learnability: Interpreting and Connecting to Conventional Representations 
Another question we were interested in was whether learners were able to interact with notions 
of rate of change, accumulation, and the relationship between the two in a way that lets them 
“unpack” these notions as they relate to the mechanisms of change in systems. In this section, 
we recount two such cases. 

Rate as Representing Complex, Multi-behavioral Events. We found that often in our interviews, 
making sense of aggregate rates of change in terms of individual behaviors was an interpretive 
challenge for learners (much how it is difficult for learners to interpret behaviors at different 
levels in a systems; Wilensky & Resnick, 1999). In several cases, learners started off speaking 
of rate and derivative as an inert mathematical notion disconnected from the very phenomena it 
is intended to model. This was the case for Hannah (Interview 6), who before building her own 
models was asked what might make the graph rise, then fall. She suggested that “a genocide or 
natural disaster happened”, but went on to explicitly note that events that reduce the population 
“doesn’t really affect the rate, it just, it’s just something like an outside thing that affects the 
population”.  

Hannah’s confusion regarding what behaviors or aspects of the model the rate of population 
change actually represented was echoed by many other learners – 6 of those interviewed were 
not able to make a link between the number of people born in the model and the rate of change 
of the population for a given unit of time without guidance. After having modified the model to 
observe how different behaviors all contributed to the same quantity and the way it changed over 
time, however, Hannah not only felt comfortable talking about rate in the context of more than 
one behavior, but also in terms of how differences in how a single agent behaves (extending 
agents’ life span) can interact with other behaviors (more time to reproduce) and contribute to 
overall changes in population over time: “Well I knew that if I increased the death age then it 
wouldn't decrease as much and um, I don't think I needed to increase the uh, probability of the to 
reproduce… because they would have more time to live and reproduce they would still be 
people (mmkay) around.” 

By observing and controlling a mathematical idea in terms of behavior, we suggest that Hannah 
was able to integrate an understanding of how multiple behaviors interact with one another with 
the notion of rate, which measures the results of those behaviors. In this case, she thought 
about multiple different ways to increase population: first, by giving each agent more time to 
reproduce by allowing them to live longer, and second, by increasing their probability of 
reproducing at each tick. 

Defining Mathematical Terms with Behavioral Relationships. Finally, we argue that representing 
change in systems in terms of agent behaviors can provide learners with insight into how the 
mathematical notions of rate of change and accumulation relate, and what they represent in a 
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modeling context. In one interview, we ask Brooke (Interview 3) how we could find the 
population’s rate of change for a given year. Although the model featured a plot of the number of 
individuals born at each tick in the model, as well as a plot of the total population per tick from 
which this information could be extracted, she only suggests that “you could use derivatives” – 
presumably referring to the mathematical procedure for determining a rate of change given an 
algebraic expression of the change itself – as a means to determine change for a tick in the 
model. When probed for whether she could think of any other way “with all the information you’re 
given here”, she responded “Um, I dunno, I'd have to think about that. Kind of like derivatives all 
stuck in my mind.” 

Later, after explicitly being asked how the two plots featured in the model are related, Brooke 
recognizes birth in the population as defining the rate of change in this simple model: “…our 
original population is taking this (points to lower graph) added to uh people that there were, that 
there were beforehand, (mhm) before they were (mhm) the people were born”. Later, when 
asked whether she could relate these graphs to the idea of a derivative, Brooke notes: 
“…derivatives is basically taking like an exact (mhm) point divided by another exact point finding 
the exact um, like change, but this gives us the exact change over the exact time. It gives us the 
exact number of people born at a certain time which is what derivatives is, is solving for.” 

Discussion and Future Work 
Change – especially complex, systemic change – is an increasingly important part of our world. 
In this paper, we argue that agent-based modelling can provide learners with a new way to 
“speak change”, as well as a bridge to the conventional mathematical models used to represent 
such change. The results we have reported are preliminary, and we are currently conducting a 
new series of studies that we hope will provide more insight into the relationship between agent-
based and mathematical modeling. However, we are excited by the potential that such 
environments hold for exposing learners to the complexity, power, and relevance of the 
mathematics of change for understanding our world. 
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