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Abstract

This article describes a learning research called the Instructional Software Design 
Project (ISDP), and offers a Constructionist vision of the use of computers in 
education. In a Logo-based learning environment in a Boston inner-city public 
school, a fourth-grade class was engaged during one semester in the design and 
production of educational software to teach fractions. Quantitative and qualitative 
research techniques were used to assess their learning of mathematics, programming, 
and design, and their performance was compared with that of two control classes. All 
three classes followed the regular mathematics curriculum, including a two-month 
unit on fractions. Pre- and post-tests were administered to the experimental and 
control groups. The evaluation revealed greater mastery of both Logo and fractions as 
well as acquisition of greater metacognitive skills by the experimental class than by 
either control class. Selected results from several case studies, as well as an overall 
evaluation are presented and discussed. Using ISDP as a model project, a 
Constructionist vision of using technology in learning is elaborated. The ISDP 
approach of using Logo programming as a tool for reformulating knowledge is 
compared with other ways of learning and using Logo, in particular the learning of 
programming per se in isolation from a content domain. Finally, ISDP is presented as 
a way of simultaneously learning programming and other content areas; and the claim 
is made that learning both of these together results in better learning than if either 
were learned in isolation from the other.

l  d     d  b



2

Software Design as a Learning Environment
Idit Harel
Seymour Papert
Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

This article describes a learning research called the Instructional Software Design Project (ISDP), and offers a
Constructionist vision of the use of computers in education. In a Logo-based learning environment in a Boston
inner-city public school, a fourth-grade class was engaged during one semester in the design and production of
educational software to teach fractions. Quantitative and qualitative research techniques were used to assess their
learning of mathematics, programming, and design, and their performance was compared with that of two control
classes. All three classes followed the regular mathematics curriculum, including a two-month unit on fractions. Pre-
and post-tests were administered to the experimental and control groups. The evaluation revealed greater mastery of
both Logo and fractions as well as acquisition of greater metacognitive skills by the experimental class than by
either control class. Selected results from several case studies, as well as an overall evaluation are presented and
discussed. Using ISDP as a model project, a Constructionist vision of using technology in learning is elaborated.
The ISDP approach of using Logo programming as a tool for reformulating knowledge is compared with other ways
of learning and using Logo, in particular the learning of programming per se in isolation from a content domain.
Finally, ISDP is presented as a way of simultaneously learning programming and other content areas; and the claim
is made that learning both of these together results in better learning than if either were learned in isolation from the
other.

OVERVIEW
This article has a double intention: It adds to the description and discussion of an experiment

that formed the centerpiece of Harel's doctoral dissertation (Harel, 1988), and it uses the
discussion of this particular experiment to situate a general theoretical framework (developed over
the years by Papert and his colleagues) within which the experiment was conceived. The
experiment will be referred to here as the “Instructional Software Design Project” (ISDP), and the
theoretical framework as “Constructionism” (e.g., Papert, 1990).

The ISDP experiment involved studying a class of fourth grade students. Each student worked
for approximately four hours per week over a period of 15 weeks on designing and implementing
instructional software dealing with fractions. A narrow description of our intention in doing this is
that we wished to turn the usual tables by giving the learner the active position of the
teacher/explainer rather than passive recipient of knowledge; and in the position of
designer/producer rather than consumer of software. This idea is in line with Constructionism's
use of “building,” “constructing,” or “knowledge-representing” as central metaphors for a new
elaboration of the old idea of learning by doing rather than by being told (“Constructionism” rather
than “Instructionism”).

The usual passive view of integrating computers into education supports Instructionism and
Technocentrism (Papert, 1987). ISDP, like all projects at Paper's Epistemology and Learning
Group, attempted to change this approach by giving children the control over their learning with
computers. Children were the agents of thinking and learning—not the computer. Our view is:
Computers cannot produce “good” learning, but children can do “good” learning with computers.
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Does wood produce good houses? /f I built a house out of wood and it fell down,
would this show that wood doesn't produce good houses?...  These...questions ignore
people and elements that only people can introduce: skill, design, aesthetics... (Papert,
1987. p. 24).

It ought to be equally obvious that peopleare the agents when it comes to thinking
and learning, not computers. People use computers to do things. If we were to say
anything meaningful about the thinking and learning involved, then we should look at
what people are doing with computers, and not at what "the computer” is allegedly
doing to them. For in reality, there is no such thing as “the computer” in general—only
specific uses of computers in specific contexts...   With a passive view of education,
we open the door to technocentrism when we speak about the computer as an
“educational tool”...   It should not be an "educational tool, but just a tool. Like other
tools, it allows us to do things we couldn’t do before, or more usually, to do some
things that we could do before better (Falbel, 1990, pp. 2-3).

Building on the computer (or with the computer) a piece of instructional software about
fractions is discussed here as a privileged way for children to engage with fractions by constructing
something personal. In this, it may overlap educational techniques that employ materials such as
cuisenaire rods, fraction bars, or pattern blocks. But constructing software goes far beyond the
physical manipulations involved in using such materials. To the adage “you learn better by doing,”
Constructionism adds the rider, “and best of all by thinking and talking about what you do.”
Without denying the importance of teaching, it locates the important directions of educational
innovation less in developing better methods of teaching than in developing “better things to do and
more powerful ways to think about what you are doing” (e.g., Papert, 1971a, 1971b).

The key research question is to determine what kinds of things are “better.” In this paper we
focus on attributes such as appropriability (some things lend themselves better than others to being
made one's own); evocativeness (some materials are more apt than others to precipitate personal
thought); and integration (some materials are better carriers of multiple meanings and multiple
concepts).

We see several trends in contemporary educational discussion such as “situated learning,” and
“apprenticeship learning” (e.g., Brown, Collins, & Diguid, 1989; Collins & Brown, 1987;
Suchman, 1987) as being convergent with our approach, but different in other respects. Two
features will be discussed here as giving specificity to Constructionism in relation to this essentially
synergistic body of literature. The first is our emphasis on developing new kinds of activities in
which children can exercise their doing/learning/thinking. (Turtle Geometry is one example. ISDP
is another.) The second is our special emphasis on project activity which is self-directed by the
student within a cultural/social context that offers support and help in particularly unobtrusive
ways. ISDP provides us with insights into the unique ways in which constructing instructional
software generates and supports personal reflection and social interaction favorable to learning.

In elaborating the Constructionist vision we take the time to dissipate misunderstandings by
contrasting it with derivatives of Papert's early work that radically miss its epistemological
essence. In particular, we emphasize the fact that ISDP has little to do with the idea that learning
Logo is in itself either easy or beneficial.

WHAT WAS ISDP?

Context

ISDP was conducted as part of a larger project to study the uses of computers in elementary
schools. Project Headlight, as it is called, is based in an inner city public school, the Hennigan
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School, in Boston. Only one third of Hennigan students, with children from first through fifth
grade, participate in Headlight. (The experimental ISDP class and control class C1, which did daily
programming in Logo, were both part of Project Headlight. Control class C2 was not). As at many
Boston public schools, the majority of the student population at Hennigan is Black and Hispanic,
and in most ways the school is quite conventionally structured. A major purpose of Headlight was
to gain understanding of how a computer culture could grow in such a setting.  One feature that is
not typical in Hennigan is its building, which dates from the early seventies when there was a fad
for “open architecture.” When we first saw the school its architectural features were virtually
unused, but we viewed them as an opportunity to reinforce our open-ended educational philosophy
through the design of the space. We saw the physical environment as a very important factor in
shaping a learning culture. These open spaces allowed us to bring the technology closer (physically
and conceptually) to students and teachers; to integrate the computer activities with the regular
classroom activities; and to facilitate movement and action around the computers; to reinforce
communication and information-sharing regarding computer based activities across grade levels
and among teachers.

In Headlight there is no long hallway leading into one classroom called the “Computer Lab”
where children take their weekly “Computer Literacy Class.” Rather, there are two large open areas
(the “Pods”) housing four large circles with 100 computers, and each pod is surrounded by 6
classrooms. At Headlight, children use computers at least one hour a day, for working on their
different computer projects, as an integral part of their homeroom learning activities.

In Headlight there is virtually no use of “ready to use software” and little emphasis on learning
about computers and learning programming as ends in themselves. The students learn
programming but programming is a means to different ends, which we conceptualize as entering a
new learning culture—developing new ways of learning and thinking.

Our vision focuses on using technology to support excellence in teaching, in learning, and in
thinking with computers— technology as a medium for expression. We particularly eschew naive
views of the computer as replacing (in the guise of improving) some of the functions of the
teacher. Headlight students are encouraged to tackle exceptionally complex problems and work on
exceptionally large-scale projects in a culture where they have a great responsibility for their own
learning. They are able to work individually and collaboratively in a variety of styles where the
differences are reflected in gender, ethnicity, cognitive development, and in the individual
personality of the teachers as well as in the personality of the learners (see also, Goldman Segall,
1989a-b; Harel, 1986,1988,1989a-e; Motherwell, 1988; Resnick, Ocko, & Papert, 1988; Resnick,
1989; Sachter, 1989; Turkle & Papert, 1990).

ISDP Procedures

During the period of the ISDP project, one of the “pods” in Headlight was turned into a
software-design studio, where 17 fourth-grade students worked on constructing personally
designed pieces of instructional software; the only requirement was that they should “explain
something about fractions” to some intended audience. Before they started their software design
work, the students were interviewed individually and were tested on fractions and Logo
programming. Presenting herself as a researcher and a “helper,” Harel explained to the students
that they were not being graded, but were involved in a new kind of activity which she wanted to
observe, evaluate, and report on for the benefit of others. Students were encouraged to think of
themselves as collaborators in the project and its data collection.

ISDP was open-ended, but somewhat more structured than the other Headlight projects. It
included a series of activities that all the experimental students performed. Each working day,
before going to the computer, the students spent 5 to 7 minutes writing their plans and drawing



5

their designs in their personal Designer's Notebooks. Then, they worked at their individual
computers for approximately 45 to 55 minutes. They implemented their plans and designs, created
new ones, and revised old ones. When they wished, students were allowed to work with friends,
help each other, or walk around to see what other students were doing. At the end of the ISDP
daily period, students saved their daily Logo files on a diskette. In their Designer's Notebooks,
they then wrote about the problems and changes of the day (related to Logo, fractions, instructional
design, teaching, etc.) and sometimes added designs for the next day. The students had full
freedom to choose which concepts they wanted to teach (within the domain of fractions), how to
design their screens, what the sequence of their lesson should be, and what instructional games,
quizzes, and tests to include, if any. In short, the Project was open-ended in terms of what the
students chose to design, teach, and program. The only two requirements were: (1 ) that they write
in their Designer's Notebooks before and after each working session; and (2) that they spend a
specific amount of time at the computer each day. The purpose of this second requirement,
regarding time limitations, was to allow the project to fit into the schedule of the class and of the
school. This requirement also made it possible to estimate and draw generalizations about what
students could accomplish in a project of this kind, within time periods that could fit into the
regular schedule of any class or school in the future.

Several “Focus Sessions” about software design, Logo programming, and fraction
representation were conducted in the classroom during the project. In the first session, Harel
briefly introduced and discussed with the students, the concept of instructional design and
educational software. Together—the children, teacher, and Harel—we defined the meaning and
purpose of instructional software, and briefly discussed a few pieces of software with which the
students were familiar. Harel showed the students her own designs, plans, flowcharts, and screens
from various projects she had worked on in the past. She also passed among the students the book
Programmers At Work (Lammers, 1987) and asked them to look at notes, pieces of programs, and
designs by “real” hardware or software designers and programmers— such as the people who had
designed the Macintosh, PacMan, Lotus 1-2-3, and others. In this first session the students also
received their personal diskettes and their Designer's Notebooks (see Appendix), and we discussed
the ways in which they should and could be used during the project.

Other Focus Sessions encouraged the students to express themselves on issues such as the
difficulties of specific concepts and on how they might be explained, represented, or taught. For
example, in two of these discussions, we hung two posters, one on each side of the blackboard.
On one poster we wrote, “What is difficult about fractions?” and on the other, “What screens and
representations could be designed for explaining these difficult concepts?” We asked the students
to generate ideas for both posters simultaneously.

Other discussions focused on specific Logo programming skills. For example, in some of
these short sessions about programming, the teacher, the researcher, or one of the students, could
stand next to one of the computers that were in the classroom or in the “computer pod,” in front of
the whole class or a group of students, and explain how to use REPEAT, IFELSE, variables, etc.
The students could take notes on such concepts and programming techniques in their notebooks, or
go directly to their computers and write a procedure which included that new programming
technique or concept.

In addition, the fourth-grade students/ designers worked with third graders from another
Headlight class, who visited the ISDP class once a month, for the purpose of trying out
(“evaluating”) the students' pieces of software as they were developed. The fourth graders gave the
third graders “demos,” and then, different pairs of children were engaged in discussing different
aspects of the software projects: some were teaching/learning fractions; some were
teaching/learning Logo programming; some discussed design issues; and so forth. A great deal of
teaching/learning through socializing went on during these sessions. However, the actual teaching
was not as important as the fourth graders’ feeling that they were working on a real product that
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could be used and enjoyed by real people. It reinforced the “thinking about explaining things to
others” during their product development, and it placed them in the role of epistemologists.

The teacher and the researcher (Harel) collaborated and actively participated in all the
children's software design and programming sessions during the project: walked around among
the students, sat next to them, looked at their programs, helped them when asked for, and
discussed with them their designs, programming, and problems in a friendly and informal way. In
general, there were no specific plans for the Project's sequence, or for our presentations and focus
discussions; rather, they were initiated by the teacher or by the researcher “as needed,” at times
when they were relevant to the children's work or problems, or according to the children's
requests.

To summarize, the children’s daily activities resulted in 17 different pieces of instructional
software about fractions—one product for each child in the experiment— and 17 personal
portfolios consisting of the plans and designs they wrote down for each day's work, and the pieces
of Logo code they had programmed, as well as their written reflections at the end of each session
on the problems and changes they had dealt with that day.

To our pleasure, we observed that students worked with great intensity and involvement, over
a period of four months, on a subject that more often elicits groans or yawns than excitement—
namely fractions. What seemed to make fractions interesting to these students was that they could
work with them in a context that mobilized creativity, personal knowledge, and a sense of doing
something more important than just getting a correct answer.

ISDP Atmosphere

Procedures answering to the descriptions in the above section could be carried out in very
different atmospheres but would then, from our point of view, constitute radically different
projects. It is therefore appropriate to devote some space here to capture the particular ambiance of
this project.

The ISD environment was marked by the deep involvement of all participants. There were
interactions and reciprocal relations among the students, teacher, researcher, members of the MIT
staff, and sometimes visitors—all of whom walked around the computer-area, talked together,
helped each other, expressed their feelings on various subjects and issues, brainstormed together,
or worked on different programming projects individually and collaboratively. Knowledge of Logo
programming, design, and mathematics was communicated by those involved. Children, much like
the adults in this area, could walk around and observe the various computer screens created by
their peers, or look and compare the different plans and designs in their notebooks.

Young students were developing knowledge and ideas with out workbooks or worksheets,
working within a different kind of a structure. They became software designers, and were
representing knowledge, building models, and teaching concepts on their computer screens. They
were thinking about their own thinking and other people's thinking—simultaneously—to facilitate
their own learning. The following “snapshot” briefly illustrates the atmosphere of this noisy,
flexible, and productive learning environment.

Debbie is swinging her legs while sitting at her computer and programming in an
apparently joyful way. To her right, Naomi is busy programming letters in different colors and
sizes. To her left, Michaela is engaged in programming and debugging a screen that shows a
mathematical word-problem involving fractions, comparing thirds and halves by using a
representation of measuring cups that are filled with different amounts of orange juice and
water. She is very involved with her design, typing with one hand on the keyboard while her
other hand is moving and touching the figures on her computer screen. A few computers away,
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the teacher is trying out Tommy's program, giving him feedback on one of his explanations
about ''what mixed fractions are.'' In the background, Charlie is walking around the other
computer circle, holding his Designer's Notebook in one hand, and chewing on the pencil that
is in his mouth. He suddenly stops next to Sharifa's computer. He chats with her for a
moment, presses a key or two on her keyboard, and observes Sharifa 's designs as they appear
on her computer screen. After looking at her Logo code, moving the cursor up and down on
the screen, he calls out, “Hey Paul, come see Sharifa's fractions clock!” The noise and
movement around Michaela and Debbie do not seem to bother them at all at this moment. Now
Naomi, who sits next to Debbie, has just completed the “title screen” for her software, which
reads: ''We/come To My Fractions Project! by Naomi.” She is stretching her arms while
moving her head to the left and to the right, looking around to see "what is new in her friends’
programs. She then stretches towards Debbie's computer, and asks her to show her what she
is doing.           . .

Debbie shows Naomi her programming code. “It's a long one,” she says, running the
cursor down the screen, very proud of the 47 lines of code she has programmed for her
"HOUSE” procedure. She then gets out of the programming editor to run her program, which
impresses Naomi, who moves her chair even closer to Debbie's computer. In a quiet and slow
voice, pointing to the pictures on her screen, Debbie explains to Naomi. “This is my House
Scene. All these shapes [on the screen] are one-half. In the house, the roof has halves, the door
has two halves, and I will add to this scene two wooden wagons and a sun. I'll divide them
into halves too... The halves [the shaded parts] are on different sides [of the objects]. You can
use fractions on anything. No matter what you use... Do you like the colors?” Their
conversation goes on and on.

The idea of representing halves on the different sides of the objects, the objects being
“regular human things” in a real-life situation, is Debbies's.  In her final version of the teaching
screen, there will be an explanatory text accompanying the pictures on the screen which says
“This is a house.  Almost every shape is  1/2!  I am trying to say that you can use fractions
almost every day of your life!” Debbie is the only child in her class who has designed such a
screen.  She is very clear about why she designed it:  to teach other children that fractions are
more than strange numbers on school worksheets.  As she discovered, fractions can be all
around us: they describe objects, experiences, and concepts in everyday life.

Debbie has painted half of each object a different color, and left the other half blank.  The
house half is painted in light blue, the roof half in orange, the sun half in yellow, the door half
in red, the wagon half is red, etc.  While Debbie is working on this, the only advice she asks of
her friend Naomi is about the colors:  “Do you like the colors?”  Naomi, who has adopted a
different design strategy for her software, tells her,  “It's nicer if all the halves are in the same
color.”  They negotiate it for a minute or two.  But Debbie doesn't agree “No.  It will be
boring.”  Naomi and Debbie continue to work on their projects with the computer keyboards
on their laps..l
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EVALUATION OF ISDP

The Evaluation of ISDP was designed to examine how students who learned fractions and
Logo through the ISDP differed from students who learned fractions and Logo through other
pedagogical methods. Three fourth-grade classes from the same inner-city public school in Boston
were selected for this evaluation. One class, from Project Headlight (N = 17), was involved in the
ISD Project (Experimental Class). Control Class 1, or C1 (N = 18), studied fractions only in their
regular math curriculum and programmed in Logo as part of Project Headlight. Control Class 2, or
C2 (N = 16), studied fractions in their regular math curriculum, was not part of Headlight, and
programmed only once a week in the school's “computer laboratory.”

Experimental Design

In January 1987, all three classes were pre-tested on specific skills and concepts in fractions
and Logo. Thereafter, one of the classes participated in the four-month ISDP experiment. All 51
pupils were then tested again in June on their knowledge of fractions and of Logo (see Figure 2).

Using the set of pre-tests, it was established that no significant differences existed between the
experimental and the control children's knowledge of fractions and Logo before the experiment
began (Harel, 1988, 1989e). Four months after the pretests, by using a similar set of post-tests,
the ways in which these students differed in their knowledge and understanding of fractions and
Logo were investigated in
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detail. In addition, during the project the researcher and the teacher conducted careful observations
and interviews with the experimental students, and assessed (by the use of case study methods and
videotaping) the development of the students in the ISD Project.

Many research questions could have been raised concerning the ISDP experiment, since it
involved many variables within a complex pedagogical situation. However, for the purpose of this
study, the objectives and questions were narrowed down to two main sets of assessments:

1. an assessment of the experimental children's knowledge of basic fraction concepts; and
2. an assessment of the experimental children's knowledge of Logo programming concepts

and skills.

The “experimental treatment” integrated the experimental children's learning of fractions and
Logo with the designing and programming of instructional software. Since the experimental
students and the C1 class had equivalent, though differently-styled, exposure to Logo (i.e., both
classes were part of Project Headlight), it was an open question whether participation in ISDP
would result in greater Logo knowledge, but one naturally expected both of these groups to exceed
class C2 in this area. With respect to fractions learning, the experimental group had additional (but
not formal) exposure to fractions concepts through ISDP, so that improved performance of the
experimental class was expected in this area as well, but the assessment sought to determine
whether this was in fact true and, if so, what the nature of the improvement was. As will be seen in
the next sections, the assessment uncovered some surprising results, more finely textured than
these general surmises.

Within the fractions domain, emphasis was placed on children's ability to translate between
various modes of fractional representations. This aspect has been shown to be a crucial part of
rational-number knowledge, and particularly difficult for young children (e.g., Lesh & Landau,
1983; Behr, Lesh, Post, & Silver, 1983; and others). But standard school tests were also used,
which concentrated on students' use of algorithms. In Logo, the evaluation investigated the
children's knowledge, use, and understanding of programming commands, instructions, and
operations. More specifically, it assessed whether the students from the experimental class knew
and understood more programming commands and operations such as REPEAT, IFELSE,
SETPOS, variables, and inputs in their projects, and became better at these skills, than the students
in the two control classes. The evaluation also investigated whether the experimental students could
understand, implement, debug, transform, optimize, and modify someone else's programming
code better than the students from the control classes. Finally, the evaluation assessed whether the
experimental students were able to construct Logo routines for someone else's design or picture
and were better at this than the students in the two control classes.

Given the breadth of the learning experience and the mixed methodology of the assessments—
including the extensive case studies of several students (i.e., examination of the children's
progress, Designer's Notebooks, finished products, interviews with participants during and
following completion of the project), as well as the more formal pre- and post-tests—it was
possible to trace in detail the microgenesis of Logo and fractions skills and concepts, exploring
different approaches taken by the experimental students with different personal and learning styles
(see, e.g., Debbie's Case in Harel, 1988, pp. 7~245; and the Appendix in Harel's paper in Journal
of Mathematical Behavior, 1990a), as well as to draw inferences concerning their acquisition of
metacognitive skills.

The experimental design of ISDP and the analysis of its results we present here raise
methodological issues for education research. Most acutely, these concern the question of what
kinds of rigor are appropriate.
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A simplistic position would maintain that the highest standard of rigor is always required. But
we argued elsewhere (e.g., Papert, 1987) that this can sometimes result in an analog of the
complementarity principle in physics, stronger formal rigor sometimes being obtained only at the
cost of thinner results. Thus Harel (1988) adopted different kinds of rigor for different aspects of
her work, and we will do likewise in this article.

The first results section demonstrates with statistical rigor that learning took place: the ISDP
subjects learned quantitatively measurable skills in the programming and in standard school
domains. The section that follows illustrates some aspects of the in-depth investigations into what
and how they learned, going beyond test scores to obtain qualitative insights into the changes that
occurred in students' thinking about fractions, and the dynamic of the process that lead to those
changes. Finally, a discussion section follows, where we discuss why the students learned what
they learned.

RESULTS

Quantitative Results from ISDP

The “thinnest” and most formally rigorous part of the analysis shows that the subjects in the
experiment did improve in their ability to perform on standardized quantitative tests of performance
in their work with fractions (as presented in the following subsection). Here the solidity of the
results derives from the existence of a large established body of data on how students perform in
such mathematics tests (e.g., Behr et al., 1983; or Lesh et al., 1983). We also present some
quantitative data to show that the ISDP subjects did learn much more about Logo programming
than the subjects in the two control groups (as presented in the subsection about Logo results).

Results from the Fractions
Post-Tests of the Three Classes

All the teaching of fractions, for all the three classes, was conducted for two months, during
regular math lessons only and following the city-wide curriculum and traditional teaching methods
(see Figure 2). The experimental class was not provided with any additional formal instruction on
fractions, although we note that the representations of fractions in the context of instructional
design was discussed in a few informal Focus Sessions. (More information about the
characteristics of the pupils, teachers, and their math curriculum is available in the dissertation and
the Appendix of Harel, 1988.)

The post-test included 65 multiple-choice questions. Out of these, 60 were taken from the
Rational-Number Project (RN Project, Lesh et al., 1983 pp. 309-336). The remaining five were
designed by the researcher and included word problems and construction of representations. Of the
60 RN Project questions, 43 were given to the students in the pre-test, then again in the post-test.
As examples, Table 1 shows the children's average percentages of correct answers on the fractions
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pre- and posttests; Table 2 shows the table of results for the Two-Way Factor Analysis of Variance
with repeated measurement for the fractions pre- and post-test scores; and Figure 3 shows the
interaction diagram of the two main factors. In general, the difference in pre- and post-test scores
of the students from the experimental class was almost twice as great as that achieved by the
students from class C1, and two-and-a-half times as great as that of class C2.

Results from the More Difficult
Questions on the Fractions Test

We gave specific attention to the analyses of the most difficult translation modes between
rational-number representations that the students had to carry out in the test. Some of these
translations were the most difficult for students of all ages in previous studies, and were equally so
for all students in the present study's pre-tests. In the post-tests however, these translation modes
were still relatively difficult for the control students, but dramatically less so for the experimental
students. Let us consider an example. Lesh et al. considered question 50 to be so complex that it
was not given at all to the fourth graders in the RN Project, only to sixth, seventh, and eighth
grade students (Lesh et al., p. 326). To answer this question, the students had to translate a
pictorial representation into a written (verbal) representation of a fraction.
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Question 50 presented students with a polygonal region representation, with a numerator that
was higher than 1, a denominator, a representation of a rational number lower than 1, in a discrete
object that included a perceptual distraction (i.e., one part was “outside” the triangle area). In order
to choose one of the options, the students had to (1) translate the given picture into symbols or
words (two fifths are shaded in), (2) read the question again and realize that the question referred
to the denominator of the shaded fraction, and (3) find the correct answer, which was b. Option a
is confusing because it is written like a spoken symbol and includes “relevant” numbers—five and
thirds. Option b is confusing because it does not mention “fifths,” but rather “five” (the
denominator is “five”). Table 3 shows the scores in their percentage of correct answers for
question 50.

The ISDP students scored twice as high on question 50 as did the control students, and twice
as high as the sixth to eight graders from the RN Project. The Chi Square analysis shows that the
differences of frequencies are highly significant.

Perhaps there is some “transfer” from Logo programming experience at work here.
Decomposing a given picture into its geometrical components is a common process in Logo
programming, and a skill students usually acquire in their ongoing programming experiences.
What Lesh et al. (1983) and Behr et al. (1983) consider as a “perceptual distraction” (i.e., the one
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little triangle that was “outside” the big triangle area) was probably not at all a distraction for the
students who looked at the picture with “Logo eyes” and decomposed it into its five geometrical
components.

Another example is Question 42. It involved a translation of pictorial into symbolic
representation (see Figure 5). This question, number 42, was the 13th most difficult of the 18
asked in this subset. It was the 44th most difficult in the whole set of 60 questions given in the RN
Project to students from fourth through eighth grades (Lesh et al., 1983, p. 323). It included a
discrete object representation in which the represented rational number was less than one;
moreover, parts of this object were not congruent and were visually distracting. Table 4 shows the
scores (given as percentage of correct answers) on this question according to the children's
division into math groups (see Harel, 1988 for the detailed description of the math groups).

As seen in Table 4, none of the high-math experimental students made any mistakes. The
medium-math experimental students scored like the high-math students in the two control classes.
The experimental class as a whole scored 100% better on this subset as the students in the RN
Project, and 14 percentage points better and 27 percentage points better than class C1 and class C2,
respectively. Table 5 shows that the Chi Square analysis of differences of frequencies is highly
significant.
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Results from Standard Boston
Public-Schools Math-Tests

In addition, all the pupils were tested in math, as part of their end-of-year public school series
of “referenced tests.” This mathematics test included 40 multiple-choice questions. The average
number of incorrect answers was 5.06 incorrect answers per child in the experimental class, 6.27
per child in class C1, and 9.45 per child in class C2.

Of the 40 questions, six were specifically on fractions ordering and equivalence, four on
decimals, four on measurements of distance and time that required the use of fractions, and one on
understanding geometrical shapes (i.e., this was the subset of 15 questions directly related to
rational number concepts, their representations and computation). The average number of incorrect
answers to this subset of 15 rational-number questions was 1.60 per child in the experimental
class, 3.16 per child in class C1, and 4.62 per child in class C2.

Several conclusions can be drawn from analyzing these results. The first is that the
experimental students, in general, did much better on the entire conventional school test than the
two control classes. The second conclusion is related to the children's incorrect answers in the
rational number concepts subset of this test. In the experimental class, only 29% of the incorrect
answers in the whole test (40 questions) were incorrect answers about rational-number concepts.
But in both class C1 and class C2, approximately 50% of the incorrect answers were on rational-
number concepts. This shows the superiority of the experimental class on rational-number
knowledge in particular—as measured by this standard test. Table 6 shows the proportion of
incorrect answers in this rational number subset to the whole test.

The third conclusion is related to “transfer.” By subtracting the average of incorrect answers
on the fractions subset from the average of incorrect answers on the whole test, we can examine
the children's average of incorrect answers to all the non-fractions questions: for the experimental
class, 5.06 - 1.60 = an average of 3.46 incorrect answers per child on non-fractions questions; for
class C1, 6.27 - 3.16 = 3.11; and for class C2, 9.45 - 4.62 = 4.83. The differences between the
experimental class and class C1 are not significant here, but the differences between these two
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classes and class C2 are. This finding is interesting because it might be that the experience of
Project Headlight students (experimental class and class C1) with Logo programming contributed
to their general mathematical ability.

SAMPLE RESULTS FROM THE LOGO POST-TESTS

In the Pencil-&-Paper Log Test the students were asked: “Please list all the Logo instructions
and commands that you know and use—in column A; then, write an explanation and give an
example for each one— in column B.”   The results for this question were divided into two major
groups of findings. The first are simple findings that relate to how many instructions and
commands each child actually listed. The second relate to the children's understanding of the
meaning and functions of these commands and instructions in the Logo language. Table 7
represents the differences between the students in terms of how many Logo commands,
operations, function keys, control keys, etc., they listed in the post-test. The number in each slot
shows the average number of commands and instructions the children from all three classes listed
and explained. The advantages of the experimental students over the students from the two control
classes become clear from examining this table.

The students were also evaluated on the quality of their definitions and examples for each of
the items they had listed. In class C1 no one was evaluated as “Very Good,” whereas in the
experimental class, three students who wrote over 40 commands and instructions, and four who
wrote over 30, and gave very good examples and definitions of each, were evaluated as “Very
Good.” No one was evaluated “Low” or “Very Low” in the experimental class. However, four
students in class C2 were evaluated as “Low” since they listed fewer than five commands and
instructions and did not provide examples or definitions for all or most of those.

We also tested the children's ability to analyze given programming code and “execute” it on
paper. A long, linear Logo code composed of short strips of Logo primitives was given to the
students, and the students were asked to draw the graphics. This task required that students read
the given linear code, comprehend it, understand its flow of control, build a mental model of what
the computer would do when each of the lines in this program was executed, and draw the picture
accordingly, step by step.

Many researchers in the field of programming distinguish between writing a linear program
and a modular program. These researchers consider a linear program as one which emphasizes the
generating of effects without any consideration and understanding of the inner structure of the code
(e.g., Papert, 1980; Papert, Watt, diSessa, & Weir, 1979; Carver, 1987; Soloway, 1984; several
researchers in Pea & Sheingold, 1987; and others). On the other hand, a modular program
emphasizes elegant and efficient programming, and is accompanied, they claim, by a higher-level
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of understanding of programming in general, and of the programming language characteristics in
particular.

Our results show that students who had written linear as well as modular programs during
their process of learning to program were better able to understand and correctly execute this
confusing linear program. The students in C2, who only knew how to write linear programs, were
not able to solve this problem accurately unlike many of the ISDP students. We should note that
ISDP students often introduced structure (i.e., subprocedures and functional naming) into their
programs only after a long period of purely linear programming, and only when they themselves
decided it was necessary; it was not imposed on them from the outside. They learned to introduce
structure, modularity, and elegant coding when they themselves realized the need for it in
maintaining their long programs, in adding new parts to them, or in re-using (instead of re-writing)
certain subprocedures in several places in their programs.

Another interesting aspect of these results came to view in the “number of trials” category.
Many of the ISDP students tried more than once to draw the picture on paper, and finally found the
right solution; but the students in the control classes who had gotten it wrong in their first trial were
apparently not motivated or determined to try again or to find the right solution. Many of them
simply wrote “I don't know how to do it,” and went on to the next task on the test.

Finally, we mention that on a “Debugging Task” given to the students on the computer, the
ISDP students were faster at identifying the bugs, locating them, and then re-evaluating the
program in order to create an output that corresponded perfectly with the original goal given to
them. The data in Table 8 shows the results for “Tasks 1 and 2” on the computer, which required
that the students run a given bugged program, analyze the features of the resultant graphics,
identify the discrepancies between them and the desired graphics, enter the Logo code on the
computer, locate the different bugs causing the discrepancies, fix the program on the computer,
and add the corrections on the program that were written on the paper.

Table 8 speaks for itself. The superiority of the ISDP students over the other pupils is clear, as
is that of class C1 over class C2. Table 9 shows a Chi Square Analysis of these results.
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In addition to the above quantitative results we made a number of qualitative observations
about the children's debugging strategies. For example, the first thing all the ISDP students did
was to change the HT (Hide Turtle) command at the very beginning of the procedure, to ST (Show
Turtle), so that they could follow the turtle as it executed the code. On the other hand, the first
strategy that most of the students in class C2 and many in class C1 used was to copy the program
given to them on paper (in sub-task 2) into the Logo Command Center and execute it line by line.
This strategy worked well until they reached the REPEAT statements, which were written on more
than one line. Then, the students got confused because the program still did not work, though they
were sure that they had located a bug. Instead of trying a new strategy, these students then erased
everything and started to copy the procedure into the computer in “direct mode” again, which
resulted in the same thing happening again, and so on.

In “Tasks 3 and 4 on the computer,” the students were asked to optimize the code given to
them in Tasks 1 and 2, and make it clearer and shorter. In order to solve these sub-tasks, the
students had to cease operating on the individual command level, and start thinking in a procedural
mode, using REPEATs, procedures, and inputs. To summarize these results, the experimental
students were more flexible and attempted to explore a greater variety of ways for producing the
same Logo drawings. They understood and reached a more modular level of code, and many of
them tried to use repeats, sub-procedures, and variables. The experimental students also performed
significantly better than the control students on the three other items of this test, covering use of
inputs, modification of procedures according to specific requests, and prediction of results of short
but confusing graphics programs (see Harel, 1988; 1989b. d, e).

Interestingly, all the ISDP students, who had already performed much better than the control
students in the similar pencil-&-paper tasks, performed even better when using the computer. But
the students from class C2 got more confused at the computer, and performed less well than they
had on the pencil-&-paper task. Class C1 was somewhere in between: the high-math students, like
those from the ISDP class, performed much better at the computer, and the medium- and low-math
students performed similarly to those from class C2— far less successfully than they had in the
pencil-&-paper task.

Similar trends were found in the results of the Logo post-tests and in the Fractions post-test:
the ISDP students consistently scored higher than the other two classes; but class C1 usually
scored higher than class C2. Also, the high-math students from class C1 made up a special group.
They were never as good as the high-math ISDP students, but most of the time they were as good
as the medium-math ISDP students. Their scores in the fractions test were often higher than those
of the students from the RN Project, and stood out from those of the other control students. What
does this mean? It seems as though only the high-math students in class C1 strongly benefited
from Project Headlight experience with respect to the pictorial-to-symbolic translation of fractions.
This was probably due to their programming expertise, which contributed to their ability to
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translate picture representations into written ones, and vice versa. This phenomenon requires
further investigation. It is an interesting one, since it suggests a correlation between the children's
level of understanding and involvement in Logo programming, and their ability to understand
different representational systems.

QUALITATIVE RESULTS
ABOUT WHAT AND HOW THE
STUDENTS LEARNED

Thicker descriptions than “getting better at” fractions or Logo in the school's terms were
derived from an analysis of a large body of qualitative data derived in three ways: formal
interviews, preservation of students' work, and observations of process. The 51 students in the
experimental and control groups were interviewed before and after the ISDP experience. The ISDP
students' work was preserved in Designer Notebooks and in computer files showing the state of
their software projects at the end of each day. In addition to direct daily observations by the
researcher and teacher, videotape made in two modes gave many opportunities for micro-analysis
of behaviors: in one mode the video camera was carried by an observer and directed at interesting
events, in the other it was placed in one position on a tripod for an entire session and simply
allowed to run. These sources of data allowed us to see subjects discovering new ways of talking
about fractions and relating to fractions spatially and kinesthetically as well as linguistically and
conceptually (e.g., Harel, 1 990b).

The interpretative nature of such conclusions required rigor that is different in kind from
statistical analysis that checks whether or not the probability of differences in scores could be due
to chance. But it is the richness of observation obtained from so many different sources that
yielded a coherent sense of the development of individual subjects as well as of shared
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developmental trends, and this gave us confidence in our conclusions that we could not have
obtained by any other means. To appreciate this coherence in full it is necessary to refer to finer
textured case studies published elsewhere (Harel, 1988, 1990a). Here we focus on four issues
which we label as development of concept, appropriation of project, rhythm of work, and
cognitive awareness and control.

Development of Concept. Under the rubric development of concept we analyze the
movement from rigidity, particularly, and isolatedness toward flexibility, generality, and
connectedness. In the initial interviews questions such as “What is a fraction?” or “When you close
your eyes and think about fractions what images do you have?” or “Can you give me an example
of a fraction?” revealed several aspects of particularity. There was particularity in the use of
particular rational numbers (usually one half or one fourth) as prototypes. Most strikingly there
was particularity of restriction to the spatial: A fraction is a part of something, and “something”
means something physical or geometrical. Of course children from an early age use fraction words
linguistically to refer to parts of other kinds of entities, such as time (“half an hour” or “I am eight-
and-three-quarters”) and money (“a quarter”). But in the interviews they very seldom seemed to
connect such usages to a general notion of a fraction. When specifically prompted to look for
fractions in a real calendar or clock, subjects gave answers referring to the squares on the calendar
or shapes on the clock face. One student even referred to the pattern strap-watch-strap as analogous
to the numerator, the slash, and the denominator in the school representation of fractions! And
even within the spatial there was a high degree of particularity in choosing examples that happened
to coincide with those one expects to meet in school books: “a fraction is a half a pie” or “a fraction
is like an apple or an orange divided in the middle.” When asked to draw a fraction most
commonly they would draw a circle or a square, divide it vertically (not necessarily equally), and
shade some parts. In some cases the degree and rigidity of the particularity bordered on the bizarre.
For example, Debbie was committed to the idea that a fraction is the right shaded part of a circle
divided by a vertical diameter. When asked whether the unshaded part of the circle is a fraction,
she said, “No. It's not a fraction. It's nothing.” Such tendencies were also seen in the choice and
modes of representation of fractions in the very first examples of computer screens made in the
experimental students' software projects.

All this changed dramatically in the course of the project. The content of the software as well
as the post-interviews revealed a widening diversity of kinds of examples and representations
among the ISDP students. Even more significantly, there was often a conscious—indeed, one
might well say philosophical, recognition of the achievement of greater generality. In Figure 7 we
show a few examples of some children's further representations. Although it is difficult to capture
the colorfulness and playfulness of those animations in this static black and white medium, the
children's general ideas, their diversity, and complexity is captured here.
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Consider Debbie again. After a whole month of explaining about fractions—by creating a
representation showing a half of her computer screen, and different geometrical shapes divided into
halves and fourths—Debbie discovered something. Her discovery was expressed in her choosing
to teach an idea of a different, more “philosophical” nature than how to cut a shape into thirds or
how to add a third and a half.

She chose to explain that, “there are fractions everywhere... you can put fractions on
anything.” To teach this idea, Debbie designed a representation of a “house, a sun, and two
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 wooden wagons” (see Figure 1). She worked very hard on implementing this representation using
some quite complex Logo programming code (see Harel 1988, pp. 118-140 for a detailed
description of her lengthy and complex programming process and her work on this particular
screen).

Debbie was not alone. A few weeks later, Tommy's House appeared, and then Paul's. The
idea that it is important to teach others that “fractions are everywhere,” and that one could “find
fractions in regular human things” was spreading around the Design Studio.

Michaela and Sharifa, who used Debbie's software and received her full set of explanations
about it, also chose to teach the same principle, but in another way. Sharifa selected to represent
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fractions by using a clock, teaching her users that “Half an hour is a half of ONE hour!” Her
enthusiasm in announcing to the world that, “half of an hour is a fraction too!” (and her use of
exclamation points) is evidence for the philosophical importance of the breakthrough as she
experienced it. Michaela chose to teach this principle through using a representation of “two
measuring cups filled with different quantities of orange juice, water, or flour—depends on the
fraction...”  Later she confessed, “I found so many fractions in my kitchen ... I told my mom
about it too...”

These observations are consistent with the ways in which ethnographers such as Scribner and
Lave (1984) have demonstrated the separation of school knowledge of mathematics from practical,
everyday knowledge. But we note something further that has a disquieting as well as an
educationally hopeful aspect. The disconnection seems to be well entrenched within both the
practical and everyday side and on the school side, as shown for example by the fact that Sharifa
had to discover a connection between “half an hour” and “half an apple.” On the other hand, she
did make the discovery, and did so without explicit or directive prompting by adults. Similarly, we
see clear evidence that many students do not see “a quarter” as related to either the 1/4 in their
school worksheets or the “25% off” in a store's sale pricing.

Our conjecture is that “disconnection of knowledge” must not be seen primarily as a limitation
of “schoolish” knowledge but rather as a universal characteristic of how knowledge develops, first
as “knowledge in parts” (to use Andrea diSessa's phrase) and then by the unifying effect of control
mechanisms such as those described by Lawler in Computer Experience and Cognitive
Development (1985), by Minsky in Society of Mind (1986), and by Papert in Mindstorms (1980).
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Appropriation of the Project. Our second rubric, appropriation of the project, refers to
observations about a shift from a reluctant, impersonal, and mechanical mode of working to a
growing personal engagement, assertive individuality, and creativity. Debbie's case once more
illustrates this process. Her initial response to the project was globally very negative. She simply
did not want to develop software about fractions. In the culture we tried to maintain, she was
allowed to hold back but gradually began to succumb to generalized social pressures. So by the
end of the second week, she was beginning to put fractions on her computer screen. But what she
put up was still a direct reflection of the stereotyped model of fractions she had derived from math
class. However, a new process was also beginning. We would say that she was “working
through” her ideas (and no doubt her feelings too) about fractions. It took her approximately a
month to achieve her break-through. Now she had an individual philosophical position which she
pursued with something of a missionary zeal. She had given herself the task of leading the rest of
the world to her discovery.

Time Frame and Rhythm of Work. This category appears to be an essential element of
the process of appropriation. Switching in and out of projects in the fragmented time of the regular
school, simply does not provide the conditions for personal appropriation and expression of
personal intellectual style. Observations in the ISDP also show the importance of pace in the
student's rhythm of daily work and in the radical differences in individual style of work, action,
and thought. Analysis of videotapes set up to run continuously at fixed places show a pattern of
work in striking contrast with the regular school notion of “efficient time on task.” In the videos,
we do see periods of intense concentration. But we also see periods in which students' attention is
elsewhere: sometimes looking at a neighbor’s work, sometimes engaged in play, chatting, and
interactions that have no discernible connection with the project. Is this an “inefficient” use of time?
While we did not measure this with any rigor, it appears to us that the rhythms of work adopted by
the individual students have an integrity that contributes to getting the job done and especially to
getting it done creatively. And in making this assertion we feel supported by such ethnographic
studies as Bruno Latour's (1987) description of the ways in which engineers and scientists at work
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mix “serious” talk about the problems in hand with intrusions from everyday life and personal
concerns.

Metacognitive Awareness. In this rubric we describe in what ways ISDP encouraged
children's metacognitive awareness (i.e., children's thinking about their own thinking), their
cognitive control (i.e., planning, self-management, and thinking about these processes), and their
metaconceptual thinking (i.e., children's thinking about their own knowledge and understanding of
concepts).

Through the project the students developed problem-finding skills. For four months, students
involved themselves in discovering problems they wished to solve. No one specified the problems
for them; rather, they were the ones in charge of deciding, for example, what was difficult about
fractions, what screens to design to explain fractions, what Logo procedures to create and how,
etc. Students also developed an awareness of the skills and processes needed to solve the various
problems they posed. The Designer's Notebooks, as another example, required that children
design and think about their screens on paper. Their initial drawings and plans demonstrated that
they were not very aware of either the programming or the fractions knowledge and skills needed
to accomplish their designs; however, as the project progressed they rarely came up with a design
they could not manage in Logo. They also had to be aware of their target users' knowledge of
fractions so that they could make the representations they had created on the computer
comprehensible to them. Not only did children become aware of strategies to solve a problem at
hand, they also learned to activate them. The Logo post-tests, for example, showed that the
experimental children were able to optimize, modularize, and debug Logo procedures better and
faster within given time constraints.

Over the course of the project, children developed the ability to discard inefficient designs,
plans, and solutions and to search for better alternatives. In other words, they developed cognitive
flexibility. During the project they learned to adjust their cognitive efforts to match the difficulty of
the problem. They would often begin to implement their designs in Logo, but when they realized
that too much effort was needed to accomplish a simple or “unimportant” design, they stopped
working on it and moved on to a screen that was more crucial for their software or decided to
redesign the screen that was giving them problems. As a result the ISDP students were not rigid in
their solution processes in the Logo posttests, and did not stop working on difficult problems
(unlike many of the control children who simply answered “I don't know”), but kept trying until
they found the solution.

Another thing they learned was how to control distractions and anxiety. In this project (and in
Project Headlight in general), children worked in an open area next to their classroom. Different
children worked on different problems, with other children, teachers, and visitors often walking
around. Children learned to keep their attention focused on the problems they were working on,
and to resist being distracted by external stimulation. They also learned to control their anxiety
when a problem was difficult. Post-tests showed that Project Headlight children (both ISDP and
C1) did better in avoiding anxiety, focusing efficiently on the problems given to them and not
letting external interference distract them from their thinking and writing.

The community supported a practice of continual evaluation: Children evaluated their own and
each other's performance every day when they ran their software and made entries in their
Designer's Notebooks, and when they looked at other children's software—sometimes making
suggestions or borrowing ideas. They were constantly relating their current performance and
implementation phases to the general goals of the task and making appropriate changes if the result
was too slow or unclear.
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The students learned to monitor their solution processes. Since they were in charge of their
own learning and production, they knew that when they had a problem or difficulty they could
look first to themselves for a solution. They developed self-reliance and faith in their thinking.

Finally, the students became articulate not only about general planning and specific design
tasks, but about the subject domain as well. They talked, thought about, and actually related to
fractions, both during their involvement in the project and in the interviews and tests that took place
afterwards. From their point of view, it was having to teach and explain fractions to someone else
that caused them to embrace it so thoroughly because, as they said, “how can you teach it if you
don't know it yourself?” Much like professional educational-software producers, who gain deeper
understanding of the topics involved in their software by thinking of ways to build explanations
and graphical representations for their future software users— the experimental children, through
teaching and explaining, also gained an awareness of what fractions were or of what they knew
and did not know about fractions. To give some examples of students' metacognitive expressions,
here are four related quotes from the post-interviews.

Andy: “It’s supposed to be for littler kids, right? But to program it so they can understand
it, you have to be sure that you know what you are talking about. 'Cause the teacher has to
know more... You don’t know how the other kid will react to it and all of that... it was really
hard to get it so they will like it... Always to think about and imagine that you are small, right,
and how would you like it?!”

Naomi: “It is hard to teach. You have to have a pretty good understanding of something,
so you'll be able to explain it well to others... and a lot of times it’s really hard to understand
what's happening with these fractions...”

Debbie: “You have to show them fractions and explain, little by little. To program the
scenes, so they will learn how to do fractions, and what they did wrong... then, someone can
listen to you, to the computer, I mean, and understand.”

Paul: “It’s hard to tell someone else that doesn’t'‘ know about fractions how to do these
things. So I program this software for them, to help them understand it... But I have to think a
lot about what I really know and how to show it on the computer, and how to explain it. And at
the end, how to test them about it.”

DISCUSSION: WHY DID THEY LEARN?

The simplest description of the ISD experiment reads like a “treatment” type of experiment:
These subjects did something particular (made instructional software) for so many hours (close to
70 hours of work). In fact, the situation is vastly more complex than anything that could be
sensibly described as “changing one variable while keeping the everything else constant” because
there were too many particulars involved. To make their pieces of software, the students used
particular computers (IBM PCjrs) and a particular programming language (LogoWriter). The
project included focus sessions where the specific content of fractions was discussed in a particular
way—informally and compared with school classes, briefly. The project took place in a particular
part of the school with a particular “computer culture.” And during the ISDP the culture developed
further in a particular way, with particular customs of interaction, attention, mutual help, secrecy,
humor, and so on. The students and their teacher were aware of having a unique relationship with
the experimental staff. They reacted in particular ways to the presence of video cameras, question-
askers, and note-takers.

One can raise innumerable conjectures about the “real” source of their learning about fractions,
for example. Did the simple fact of spending some 70 hours programming representations in Logo
contribute to the results? Was the “moral climate” in the project largely responsible? Or the fact that
the teacher felt she was part of something important or simply different? Some such conjectures, or
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aspects of such conjectures, we can, and do, try to check by studying control groups. But there are
far too many of them to treat in a rigorous way.

What can be said with some certainty is that we created a total learning environment in which
some impressive learning took place. Teasing out the contributions of particular aspects of the
environment is not a reasonable goal for any single well-defined experiment. Understanding will
come through a process of gradual accumulation of many projects and of a great deal of theory
building (e.g., Kafai & Harel, 1990; Jackson, 1990; Resnick, 1989). What we can do here is to
share our own intuitions and, as part of the larger scientific enterprise, to formulate and discuss
some conjectures concerning these intuitions of ours.

In the following sections we speculate that improvement in performance might be affected by
factors related to the affective side of cognition and learning; to the children's process of personal
appropriation of knowledge; to the children's use of LogoWriter; to the children's constructivist
involvement with the deep structure of fractions knowledge (namely, construction of multiple
representations) to the “integrated-learning” principle; to the “learning by teaching” principle; to the
power of design as a learning activity.

However, the main point we would like to make here is that each one of these conjectures,
when considered alone, would only give very partial information about why ISDP took the form
and yielded the results that it did. Only by considering them together, and by speculating about
their interrelations, can we take a step towards understanding the holistic character of
Constructionism in general and of ISDP in particular.

The Affects of Affect

From certain Instructionist points of view (e.g., Papert, 1990) one could see a paradox in the
results obtained here. Here are a few examples from the ISDP students' test scores: Debbie scored
51% correct on the fractions pre-test and 84% on the post (33% difference); Casey scored 55% on
pre and 83% on post (28% difference); Rachel, 55% on pre- and 87% on post (32% difference); or
Oai, 55% on pre- and 97% on post (42% difference). Debbie's, Oai's, Casey's and other
children's ability to work with fractions, improved considerably from working on a project that
was entirely self directed, gave them no “feedback” in the form of marking responses right or
wrong, gave them very little guidance or information about fractions. How could worrying about
whether “fractions are everywhere,” to take Debbie's concern as an example, lead to greater ability
to do school problems in manipulating fractions?

The “obvious” explanation, which nevertheless surely has more than a little truth, is that the
students developed a better attitude towards fractions, perhaps even came to like fractions. We
recall that Debbie was initially reluctant to have anything to do with such stuff but ended up with
enthusiastic missionary zeal. One does not need any complex theory of affectivity to conjecture that
she might therefore be more likely to engage her mind with fractions both in the regular math class,
so that she would learn more of what she wanted to teach, and in test situations, so that she would
score more.

Pursuing the idea that Debbie changed her “relationship with fractions” leads into an area
where the line between the affective and the cognitive becomes hard to maintain (e.g., Turkle,
1984; Turkle & Papert, 1990). We see something happening that is analogous to the development
of a greater intimacy in relationships with people. Debbie becomes willing to take more risks, to
allow herself to be more vulnerable, in her dealings with fractions. As long as fractions-knowledge
was teacher's knowledge regurgitated, she was emotionally safe; the risk of poor grades is less
threatening than the risk of exposing one's own ideas.
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Our view of people like Debbie is strongly colored by the sense that when they allow
themselves to tap into personal knowledge, they allow knowledge about fractions to become
connected with the personal sides of themselves. We conjecture that improvement in performance
is related to the extent to which the students respond to a problem about fractions by “digging
around” in their own stocks of knowledge as opposed to trying to follow set procedures. We note
that this point could be formulated in Scribner's (1984) language by saying that their thinking
about fractions shifts from scholastic intelligence, characterized by rigid, inflexible, externally
imposed methods, to practical intelligence characterized by the use of multiple, flexible, and
personal methods.

The Importance of
Situatedness

The idea, though not the word, is an important theme in the development of Logo-based
Constructionism (Ackermann, 1990; Papert 1980, 1984a-b, 1987). In this spirit we attribute the
fluency with which our subjects work with fractions to the fact that this knowledge is situated in
computational microworlds, much as Jean Lave's weight watchers benefit from the supportive
consequences of the fact that fractions are situated in the micro-world of the kitchen. A similar
example is how Michaela was able to grasp fractions' significance in the context of using cooking
tools for representing fractions. An even more striking example is provided by Sharifa, who got a
grasp on the fractional nature of time through support from an overlap between the way the clock
face represents fractions as angles, and the way in which the Logo turtle (which by then was
familiar to her) does something very similar.

In that sense, our observations are consistent with those of Lucy Suchman, Jean Lave, and
John Seeley Brown about “situated knowledge.” Like these researchers, we are strongly
committed to the idea that no piece of knowledge stands and grows by itself. Its meaning and its
efficacy depend on its being situated in a relation to supporting structures. However, we attach
more weight than we think those writers do to the Society of Mind metaphor (e.g., Lawler, 1985;
Minsky, 1986; Papert, 1980) which would allow the situating of knowledge in internalized, mental
environments to act in much the same way as situated in external, physical environments. Looking
at the performance of Sharifa from this point of view we would say that her work with the
computer enabled her to bring together in her thinking mutually supportive internal microworlds, in
this particular case, microworlds of clock-time and of simple fractions.

The Contribution of Logo

There is a body of literature that addresses the question whether “programming” in general or
“Logo” in particular can induce cognitive effects, and if so to what extent. In this sense, Logo
would be seen as a causal factor in the improvement of fractions-knowledge or cognitive skills
seen in our study.

But Papert (1987) has used the term “Technocentrism” to warn against simplistic forms of this
question. In different contexts the import of the phrase “learning Logo” can differ so greatly that
the question borders on meaninglessness. Nevertheless, in the particular context of the ISD
Project, where Logo was not isolated from a total context, and where students programmed
intensively and extensively, one can meaningfully begin to ask how various features of Logo
contributed to the success of the children's work.

At least one important contribution of Logo in this study was indirect—having less to do with
acquiring cognitive skills than with mastering a subject domain— learning how to program and
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using Logo enabled these students to become more involved in thinking about fractions
knowledge.

But we do think that Logo, because of its structure (or ISDP, because of the unique way it
used the structure of Logo), had a direct affect. Sheriff’s ability to see the analogy between the
clock and the turtle is one example of these affects. Our conjecture here, stated in its most general
form, is that the structure of Logo brings students into direct and concrete contact with issues of
representation—in the case of ISDP, representation of the specific object of study, fractions; and
more generally, with the representation of objects, projects, structures, and processes in terms of
subprocedures, LogoWriter pages, and other computational structures.

It is relevant to note that much of what the ISDP students did could in principle be done by
other methods, such as using pencil and paper to draw representations, or using physical
manipulatives of various kinds (for representation construction). This might seem to make the
contribution of Logo quite incidental. But in practice, we find it implausible that traditional media
could equal the ease with which Logo allows students to save and connect concepts and their
different representations, and especially how it allows them to develop and modify such
representations over long periods of time. Even more important, working in Logo on one's own
machine, in a culture where that's what everybody else is doing, reinforces the learner's contact
with his or her personal knowledge that is expressed in a real product—a piece of software—that
can be used and re-used by oneself or others, changed, modified, and grow with the knowledge of
the learner and of the culture. Logo facilitated this ongoing personal engagement and gradual
change of knowledge; and at the same time, it also facilitates the sharing of the knowledge with
other members of the design studio, and it allowed learners to continue and build upon their and
others' ideas and comments very easily. Logo facilitated communications about the processes and
acts of cognition and learning.

Of course we do not maintain that only Logo could do this. Surely, many new media will
develop that can do it better. But looking carefully at the features of Logo that contribute here, and
the ways it was used in the ISDP context, will be of use in guiding such developments (e.g., Harel
& Papert, 1990). Pursuing such issues requires much further research. However the research that
will elucidate them is not well guided by the kind of questions that have often been posed in the
literature, such as “Does Logo have such and such a cognitive effect” but rather “Can Logo be used
to amplify and support such and such a direction of children's intellectual development, or such
and such a change in a learning culture. “

The Deep Structure of Rational-Number Knowledge

Whereas most school work touches only on the surface structure of rational-number
knowledge, we believe ISDP puts students in touch with the deep structure.

Elementary-school children's processes as well as difficulties in learning fractions and
understanding their representations have been well documented. Unlike whole numbers, the
meaning of which students largely come to grasp informally and intuitively out of school, learning
the rational-number system is confined almost exclusively to school. Because rational-number
concepts and algorithms are so difficult for so many pupils, they figure prominently in school
curricula from the second grade on, mainly in the form of algorithmic tasks and the working out of
specific well-defined mathematical problems. Even so, several national assessments have found
that children's performance on fraction ordering and computation was low and accompanied by
little understanding (see the discussion of this topic in Harel, 1988; 1989 ibid, 1990a). This is
particularly unfortunate because fractions are ideal tools for learning about number systems and
representational systems in mathematics.
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We see the understanding of the rational-number representational system as a privileged piece
of knowledge among the other pieces of rational-number knowledge. Representations form part of
the deep structure of rational-number knowledge, whereas algorithms put students in touch with
only the surface structure (e.g., Janvier, 1987; Lesh & Landau, 1983).

Logo can be a direct route to this encounter with the deep structure, enabling students to
explore the concept of fractions through various on-screen representations of their own devising.
In ISDP, this process was catalyzed by setting students the task of creating good pedagogical aids
for other students, in the course of which they thought to create fractions representations in such
forms as money, food, or clocks, as well as geometric shapes, and to accompany them with
symbolic or verbal explanations, they thought would be helpful to their target audience.

By becoming designers of instructional software, the students gained distance and perspective
in two senses. In the first place, they were dealing not with the representations themselves, but
with a Logo representation of the representations. Moving between representations was
subordinated to programming good examples of representations. Secondly, the students
programmed, not for themselves, but for others. They had to step outside and think about other
children's reactions. The depth and creativity of such an experience contrasts with the rote,
superficial quality of what typically occurs when a student is put through the paces of an externally
conceived sequence of learning.

In summary, ISDP recast fractions learning in essentially three ways:

(1) it emphasized more involvement with the deep structure (representations) over the surface
structure (algorithms) of rational-number knowledge;

(2) it made fractions learning simultaneously incidental and instrumental to a larger
intellectual and social goal, that is, having students think about and explain what they
think and learn, in an interactive lesson for younger children; and

(3) it encouraged both personal expression and social communication of rational-number
knowledge and ideas.

The “Integrated Learning”
Principle: Learning More Can
Be Easier Than Learning Less

It must be admitted that there are certain problems with integrating instructional software
design activity into a school's curriculum. Software design is a time-consuming and complex
enterprise for a teacher to handle, and it is not yet clear how it can fit into the average class
schedule. Also, at the present time, it is not very clear which school subjects would lend
themselves best to this process of learning (e.g., Jackson, 1990; Kafai & Harel, 1990).

But knowledge about computation (such as programming) and the sciences of information
(involving control over one's own processing, metacognition, and information construction) has a
special character in this respect because it has a reflexive synergistic quality—it facilitates other
knowledge. In ISDP, the learning of fractions and the learning of the complex of skills
(programming, design, etc.) encompassed in the phrase “software design” did not compete for
time; rather we maintain that each took place more effectively than would have been the case had
they been taught separately.
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The reflexive quality of information science offers a solution to the apparent impossibility of
adding another component to an already full school day. If some knowledge facilitates other
knowledge, then, in a beautifully paradoxical way, more can mean less!

The idea that learning more science and math necessarily means learning less of something else
shows a wrong conception. If these domains are properly integrated into individuals' knowledge
and into learning cultures, they will be supportive, not competitive with other learning. We believe
in the possibility of integrating science, mathematical concepts, art, writing, and other subjects and
making them mutually supportive. We also believe that in ISDP this principle of integration—
which meant that young students learned fractions, Logo programming, instructional designing,
planning, story-boarding, reflection, self-management, etc. all at the same time and in a synergistic
fashion—greatly contributed to the results.

Special Merits to Learning By Teaching and Explaining

As educators or teachers, producers, computer programmers, software developers, or
professional people in general, we are rarely encouraged to draw on our own learning experiences
in order to better understand the reasons, purposes, and processes of learning and teaching our
subject matter. Too often we tend to forget what was really difficult for us to understand, or why
one learning experience was more or less valuable for us than others in the course of our own
intellectual and professional development.

It has been observed by students and educators in our group as well as by many “experts” that
the best way to learn a subject is to teach it. Let us consider for a moment, experiences that are
common to professional people in all fields in the course of their everyday work or professional
training. Teachers, for example, often remark that they “finally understood something today for the
first time” when a student asked for an explanation of something he did not understand. Some of
our friends (professional computer programmers) at MIT have told us that they “really” learned
how to program when they had to teach it to someone else—or when they were involved in a real,
complex, long, and meaningful programming job. Many university professors choose to teach a
course on the theory of topic of their research while they are actually working on it; so that the
process of teaching and discussing their work with students, will enable them to clarify and refine
their own ideas and theories. And it certainly seems to be the case in the educational software field,
that the people who are having the most fun, and are learning the most, are the software designers
and programmers. With most educational software today, especially the drill-and-practice kind, the
users rarely gain deep understanding of the concepts taught, unless the software is supplemented
by instruction and explanations from a good teacher. But the designer, who spent a long and
intensive period of time designing, learning, and thinking of ways to build explanations and
graphical representations for given concepts (even for the simplest form of educational software),
has probably mastered these concepts and gained a much deeper understanding of them than they
were able to convey in the software product itself.

The intellectual benefit of generating one's own explanations have been stressed by a number
of theorists. Piaget, for example, has argued that higher level reasoning occurs in a children's
group in the form of arguments. These arguments, according to Piaget, help children construct and
internalize ideas in the form of thought. Such observations prompted Piaget to conclude that the
very act of communication produces the need for checking and confirming one's own thoughts
(e.g., Piaget, 1953). Furthermore, in the Child's Conception of Space (1967), Piaget emphasizes
how difficult it is for young children to decenter— that is, to move freely from their own point of
view to that of another, in either literal or metaphorical senses. Increasing communication develops
the child's ability to decenter, and to come closer to an objective view of the whole. The process of
decentering, says Piaget, is fundamental to knowledge in all its forms.
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Among contemporary researchers, Brown, for example, has done many studies to elucidate
the ways in which explanatory processes, as part of reciprocal teaching activities, motivate learners
and encourage the search for deeper levels of understanding and subject mastery. Brown
characterizes these explanatory-based interactive learning environments as ones that push the
learners to explain and represent knowledge in multiple ways and therefore, in the process, to
comprehend it more fully themselves. The interactions could be supported by computers, teachers,
or other learners (e.g., Brown, 1988).

Hatano and Inagaki (1987) also argue that comprehension and interest is enhanced where
students have to explain their views and clarify their positions to others. In the process of trying to
convince or teach other students, they explain, “one has to verbalize or make explicit that which is
known only implicitly. One must examine one's own comprehension in detail and thus become
aware of any inadequacies, thus far unnoticed, in the coordination among those pieces of
knowledge.” Their studies demonstrate how persuasion or teaching requires the orderly
presentation of ideas, and better intra-individual organization of what one knows. It also invites
students to “commit” themselves to some ideas, thereby placing the issue in question in their
personal domains of interest (Hatano & Inagaki, 1987, p. 40).

Fourth-grade children seldom have such opportunities. Peer teaching or reciprocal teaching
can be used to take a small step in that direction. We feel that ISDP took a much larger step.

Designing For Learning

In Knowledge as Design, Perkins (1986) discusses in detail the instructional philosophy that
supports the creation of a design environment for learning, arguing that the act of designing
promotes the active and creative use of knowledge by the learner—the designer. In the designing
process, Perkins says, the problem's meaning is not given by the problem itself; rather, the
designer imposes his own meanings and defines his own goals before and during the process. The
goals and the sub-goals may change over that period of time, and keeping track of these changes is
a central interest when the design task is not for the purpose of “getting it right,” but is instead
aimed at producing something useful through the use of creative and critical thinking.

Schön's work (1987) is also relevant to this theme. He is interested in how different designers
(e.g., architects) impose their own meaning on a given open-ended problem, and how they
overcome constraints (created by themselves, or given as part of the problem they solve) and take
advantage of unexpected outcomes. This interactive process requires high-levels of reflection and
develops the ability to “negotiate” with situations in “as needed,” and creative ways.

What is the difference between programming as such and designing a piece of instructional
software? How does it relate to the “knowledge as design” framework?

A “computer program” is an independent entity consisting of a logically arranged set of
programming statements, commands or instructions, that defines the operations to be performed by
a computer so that it will achieve specific and desired results. We use the term “instructional
software design” to refer to the building of a computer program that has a specific instructional
purpose and format—much more is involved than mere programming. In this context, the lessons
constructed by children were composed of many computer procedures or routines (i.e., isolated
units) that were connected to each other for the purpose of teaching or explaining fractions to
younger children. A unit of instructional software is a collection of programs that evolve through
consideration of the interface between product and user. The instructional software must facilitate
the learning of something by someone.
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Designing and creating instructional software on the computer requires more than merely
programming it, more than merely presenting content in static pictures or written words, more than
managing technical matters. When composing lessons on the computer, the designer combines
knowledge of the computer, knowledge of programming, knowledge of computer programs and
routines, knowledge of the content, knowledge of communication, human interface, and
instructional design. The communication between the software producers and their medium is
dynamic. It requires constant goal-defining and redefining, planning and replanning, representing,
building and rebuilding, blending, reorganizing, evaluating, modifying, and reflecting in similar
senses to that described by Perkins and Schon in their work.

In terms of the programming end of it, software designers must constantly move back and
forth between the whole lesson and each of its parts, between the overall piece and its subsections
and individual screens (e.g., Adelson & Soloway, 1984; Atwood, Jeffries, & Polson, 1980;
Jeffries, Turner, Polson, & Atwood, 1981). Because of the computer's branching capabilities, the
designer has to consider the multiple routes a user might take, with the result that the nonlinear
relationship between the lesson's parts can grow very complex. Moreover, the producer needs to
design interactions between learner and computer: designing questions, anticipating users'
responses, and providing explanations and feedback—which require sophisticated programming
techniques. Finally, the child-producer who wants to design a lesson on the computer must learn
about the content, become a tutor, a lesson designer, a pedagogical decision-maker, an evaluator, a
graphic artist, and so on. The environment we created in ISDP encouraged and facilitated these
various processes, and therefore we believe, contributed to the results.
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SUMMARY AND CONCLUSIONS

This paper had a double intention: to describe ISDP, and to situate this particular project in a
general theoretical framework called Constructionism. ISDP offered a realistic and comprehensive
model for our constructionist vision of education in general, and for the use of computers in
education in particular. It also offered a model for the kinds of research that we find insightful and
beneficial to our understanding of learning and development, thinking, teaching, education, and the
use of computers to facilitate these processes.

We described how the participant ISDP class, comprised of 17 fourth-grade students,
integratively learned mathematics, design, and programming, etc. in the course of using
LogoWriter to develop pieces of instructional software for teaching third-graders. We illustrated
various aspects of our evaluation—quantitative and comparative results, as well as qualitative ones.
Our evaluation showed that the ISDP students achieved greater mastery of both Logo and fractions
as well as improved metacognitive skills than did either control class. The ISDP approach of using
Logo programming as a tool for reformulating fractions knowledge was compared with other
approaches to using Logo, in particular the traditional learning of programming per se in isolation
from a content domain, and was also compared with other approaches of learning fractions. The
ISDP experiment showed that simultaneously learning programming and fractions was more
effective than learning them in isolation from each other.

The ISD Project recast fractions learning in essentially three ways:

(1) it emphasized more involvement with the deep structure (representations) over the surface
structure of rational-number knowledge (algorithms);

(2) it made fractions learning instrumental to a larger intellectual and social goal, that is,
having students think about and explain what they think and learn, in an interactive
lesson designed for younger children; and

(3) it encouraged both personal expression and social communication of rational-number
knowledge and ideas.

We emphasized the fact that ISDP had little to do with the idea that learning Logo is in itself
either easy or beneficial. We asserted that in different contexts the import of the phrase “learning
Logo” can differ so greatly, that the question borders on meaninglessness. Nevertheless, in the
particular context of the ISD Project, where Logo was integrated into a total context, and where
students programmed intensively and extensively, one can meaningfully begin to investigate the
question of how various features of Logo contributed to the success of the children's work.

We found that Logo facilitated the ongoing personal engagement and gradual evolution of
different kinds of knowledge; and at the same time, it also facilitated the sharing of that knowledge
with other members of the community, which in turn encouraged the learners to continue and build
upon their own and other people's ideas. In short, Logo facilitated communications about the
processes and acts of cognition and learning. We do not maintain that only Logo could do this. But
looking carefully at what specific features of Logo enhanced individual cognition and social
learning can help guide us in future technological developments. And indeed, ISDP provided us
with many insights—cognitive/developmental as well as technological—into what kinds of
learning tools we want to develop for constructionist learning.

We mentioned that the ISDP should not be viewed as a “very controlled treatment” type of
experiment. The pedagogical situation was quite complex, and one could formulate innumerable
conjectures about the “real” source of the experimental children's learning. We concluded that
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ISDP allowed us to create a total learning environment in which some impressive integrated
learning took place.

It was beyond the scope of this study to single out the contribution of the individual aspects of
that environment. In our view, a more complete understanding of this learning process can come
through an integrative and accumulative process of experimentation and theory-building (and there
are several projects of this kind within our Group at the Media Laboratory, e.g., Harel, 1990c).
This article is also intended as a contribution to that process, in which we shared our conjectures
and the bases on which we formulated them. We hypothesized, for example, that improvements in
performance among ISDP students could have been affected by factors related to: the affective side
of cognition and learning; the children's process of personal appropriation of knowledge; the
children's use of LogoWriter; the children's constructivist involvement with the deep structure of
fractions knowledge; the integrated-learning principle; the learning-by-teaching principle; and the
power of design as a learning activity.

However, the main point we wanted to make here was that each one of those conjectures,
when considered alone, would give only very partial information about the meaning of the results.
By considering them together, and by speculating about their interrelations, we are endeavoring to
make use of the very kind of holistic approach—to knowledge and cognition, and to the
development of learning technologies—that we believe informs and characterizes Constructionism
in general, and ISDP in particular.
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