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Part I: RHETORIC 

I shall tell you about some theorems made 
for children. This does not mean that they 
are bad for adults--any more than Winnie- 
the-P~h. The point is that most theorems 
(including the ones in the school books) are 
effectively X-rated. By this I mean that 
children can't get at them. 

Before talking about my theorems I want to 
say something;about what makes theorems good 
or bad. The most important factor is power. 
The best theorems have given men the power 
to think and do what no man could think or 
do before. But though all kids know how to 
rate cars by horsepower, they have never 
imagined there is such a thing as MATHPOWER. 
And it's not surprising: the stuff they 
call math at school gets you nowhere in 
doing or thinking anything. All you can do 
with long division is long divide...if that. 

So good theorems' for children should have 
a power punch. And the reason why I'm 
saying this to members of the Association 
for Computing Machinery is that you have 
the intellectual and material means to create 
contexts in which mathematics with a punch 
can be developed for use by children. 

I do not mean by this merely that computers 
are powerful mathematical l-~--~struments and 
can make mathematics real for action- 
oriented kids. True enough; but you are 
scarcely scratching the surface when you 
use computers to teach, motivate or liven 
up the same old math. The concept of com- 
putation is beginning to spawn new mathe- 
matical topics of which I shall describe 
one in a moment. I maintain as obvious 
that those topics from computational mathe- 
matics are enormously better matched to, 
and enormously amplify, the use of the 
computer in learning math at any age. I 
also maintain, though this is less obvious, 
that these topics provide a better route 
into mathematical sophistication even in 
contexts where physical computers are not 
available. Finally, I maintain, though 
this is far from obvious, that the few 
examples we have of good theorems growing 
from computational roots are an indication 
that the soil is rich and inviting for peo- 

ple with a talent for research and a desire 
to contribute to the lives of children. 

Part II: MATH 

Computational geometry is an embryonic but 
growing branch of geometry concerned with 
the kinds of computation needed to gener- 
ate, recognize or otherwise manipulate 
geometric figures. Turtle geometry is a 
piece of computational geometry. It is 
about the generation of line figures by 
programs which direct the motion of an 
abstract or real entity called a turtle. 
Basic turtle commands are FORWARD, w~h 
causes the turtle to move in a certain dir- 
ection known as its HEADING; and RIGHT, 
which changes the turtle's heading by 
causing a clockwise rotation without change 
of position. Thus the STATE of a turtle is 
a heading and a position; the command FOR- 
WARD changes the position component, the 
command RIGHT changes the heading compon- 
ent. To indicate how much change is pro- 
duced we write these commands as operators 
with a numerical input, measured (say) in 
millimeters for FORWARD and degrees for 
RIGHT. Thus the following program gener- 
ates a square: 

1 FORWARD i00 
2 RIGHT 90 
3 GO TO LINE i 

What input should RIGHT have in order to 
generate an equilateral triangle? Think 
before reading on! There is a fifty per- 
cent chance that you thought "RIGHT 60" 
before you corrected it to RIGHT 120" In 
any case, you used the theorem that tie 
internal angles of a triangle add up to 180 
degrees. 

My theorem reflects a different way to think 
about this problem. It presupposes that we 
are familiar with the ideas of STATE and 
TURTLE-TRIP. So imagine a turtle taking a 
trip around a triangle, ending up in the same 
state as at the start. How much did it turn? 
Obviously 360 degrees! And it turned in 
three goes, so it must have turned 360/3 
each time. 

One could state this as: the sum of the 
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external angles of a triangee is 360 degrees. 
But there is nothing special about triangles: 
the sum of the external angles of any simple 
polygon is 360 degrees. There isn't even 
anything special about polygons. So we have 
the theorem in some such form as: if a 
turtle makes a simple round trip, its total 
rotation is 360 degrees. 

This kind of geometric thinking has been 
extensively developed and tested at an 
appropriate level for elementary schools. 
(Variants have been used at pre-school and 
at college levels, but talking about that 
would take me too far afield.) The children 
use the turtle geometry to write programs 
for CRT displays (think of the turtle as a 
cursor generating the figure) and to drive 
"physical turtles" Let's look at some 
simple situations in which the theorem is 
used to overcome a geometric difficulty. 

Suppose you know how to make a turtle draw 
a plece of arc, and now want to combine two 
pieces of 60 degree arc to make a petal or 
a swan's body. How much should the turtle 
turn between the arcs? Well, it must turn 
360 degrees all the way around, and it turns 
60 degrees + 60 degrees = 120 degrees while 
on the curving part of its trip. This 
leaves 240 degrees; so 240/2 = 120 degrees 
at each end. To make a "fatter" swan we 
could use 90-degree arcs,...and I leave it 
to the reader to figure out (or measure) 
the end angle. 
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Similarly a shield (or curved triangle) made up of (say) 30-degree arcs can be seen to 
require a 90-degree turn at the vertices. And a little imagination will show how powerful 
the principle is in practical problems of generating interesting graphics: 

BIRD TIRD SPIDER 

HEART PIE POKER FACE 
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TO POLY :ANGLE :STEP 
i. FORWARD :STEP 
2. RIGHT :ANGLE 
3. POLY :ANGLE ~STEP 

END 

P I CTURES 

The figures show the action of this procedure with various inputs. It will be seen that in 
general the figure crosses itself. 

POLY 

On a more abstract mathematical level, the day comes when the child gets involved with 
figures that cross themselves and so need an extension of the theorem. For example, 
consider the following turtle procedure written recursively in LOGO: 

POLY 275 156 

STAR 

POLY 
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Now suppose that we want to introduce a stop 
rule, so the turtle will eventually halt 
ihstead of running forever around the same 
orbit. An appropriate form of our theorem 
is: 

When a turtle takes a round trip, it 
turns a whole number of 360's. 

I leave the reader to translate the idea 
into an effective stop-rule. I conclude 
by recapitulating some ways in which this 
theorem and its geometric setting seems 
better than the traditional theorems in 
the traditinnal Euclidean setting: 

(i) The idea of angle and angular 
measure is messy (and difficult for many 
children) in a status setting. The dynamic 
command: "RIGHT GO" is more real and in- 
tuitively accessible than "Angle of 60 de- 
grees" 

(2) More generally the direct repre- 
sentation of process in the formal mathe- 
matics reduces its distance from the child's 
intuitive mathematics. This is shown in 
our theorem which really captures a geo- 
metric intuition and contrasts with the 
much less intuitive nature of the Euclidean 
proofs about the internal angles. 

(3) We were able to take the theorem 
through several stages of purposeful, use- 
ful extensions. 

(4) The kids use it. 

(5) They also learn to use some very 
powerful general ideas of which the cluster 
of concepts associated with "state", 
"change of state", "return to initial state" 
is just one example. 

Related aspects of these ideas are covered 
in the following articles, available from 
the A.I. Laboratory, MIT. 

A.I. Memo No. 246: 
A Computer Laboratory for Elementary 
Schools, Seymour Papert, October 1971 
~LO~O~-~emo No. i). 

A.I. Memo No. 247: 
Teaching Children Thinking, Seymour Papert, 
Octover 1971 (LOGO Memo No. 2). 

A.I. Memo No. 248: 
Twenty Things To Do With a Computer, 
Seymour Papert and Cynthia Solomon, June 
1971 (LOGO Memo No. 3). 

A.I. Memo No. 249: 
Teaching Children to be Mathematicians 
VS. Teaching About Mathematics, Seymour 
Papert, July 1971 (LOGO Memo No. 4). 
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