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1. Introduction. The open subsets of a topological space X form a complete Brou-
werian, i.e. distributive and pseudo-complemented lattice L(X). Many topological
properties of X can be formulated as properties of L(X), although, in general, X is
not determined by L(X). Obvious examples are quasi-compactness and connectivity:
X is quasi-compact if any set of elements of L(X) whose join is I has a finite subset
whose joinis I; X is connected if no element of L(X) has a complement. These properties
which we shall call ‘ paratopological’, can be defined for lattices that are not of the
form L(X), and many topological theorems can be proved in this more general context.
The purpose of this paper is to develop sections of general topology as part of the
theory of complete Brouwerian lattices (CBL).

2. Notations and some general properties of CBL. Let L and K be complete lattices.
A homomorphism f:L — K will be called a V-homomorphism if f(Vz,) = Vf(z,)
for arbitrary sets {x,} of elements of L. Similarly an equivalence relation R will be
called a V-equivalence relation if z, Ry, implies (Vz,) R(Vy,). L is a V-sublattice of
K if it is a sublattice closed under arbitrary K-joins. Thus, the lattice of open sets
L(X) is a V-sublattice of the lattice of all subsets of the abstract set X, and the inverse
map f~1: L(Y) - L(X) induced by a continuous map f: X -> Y is a V-homomorphism.

Let R be an equivalence relation on a lattice L and 2 the equivalence class containing
the element . Werecall that the set of equivalence classesis a lattice, L/ R, with respect
to the order defined by

2< e (E2)(BY) R &y Ry &’ <y').
Let @ be an element of a CBL, L, and define the relation R, by
R, y<anx =anry.

Proposrriox 1. If L is a CBL then

(a) the relation R, is a V-equivalence relation;
(b) the canonical map f: L -~ L[R, is a V-homomorphism;
(c) the quotient L{R, is a CBL.

Proof. (a) xR, and 'Ry’ imply zaa = yaa and 2’ Aa = 3’ Aa, so that

A Aa =yAy Aa,
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198 SEYMOUR PAPERT

i.e. (xaz')R(yay’). Suppose that for each a in some set of indices (z,)R,(y,), i.e.
z, Aa = y, Aa. This implies V(x, ra) = V(y,ra) and, by the infinite distributivity of
CBL, aAVx,=aaVy,, ie. (Vz,)R,(Vy,). A

(b) Letz = Vz,. We shall show that 2 = V2,. Clearly 2 is an upper bound to the Z,.
Suppose that # is another upper bound, i.e. § > 2, for each a. This means that there
exist ¥’ and z;, such that ¥y’ Aa = yaa, 2, A0 =z, raand y’ > z;. But

Y > 2> Y AL, =T, > Y ATLAG = T,AQ=>YAT,AG = X, AQ.
By the infinite distributivity law it follows that yAxaa = xaa, whence (yaz)" = 2,
ie. a2 = 2,i.e.§ > 2. Thus 2is the Lu.b. of the Z,,1.e. 2 = V2,.

This proves that f(x) = 2 is a V-homomorphism.
(¢) That L/R, is a CBL follows immediately since

V(2AZ,) = V(f(z) Af(x,))
=f(V(zaz,))
= f(za Vx,)
= fzr Va,)
= f(2) A Vfl(x,).
We shall in the sequel denote by C(a) the set {x € L; x < a} and by L/C(a) the quotient
L/‘%e; shall make special use also of quotients L/R, where 2R y<-xva = yva.

ProrosITION 1'.

(a) R, is a V-equivalence relation;

(b) The canonical map f: L - L|R,, is a V-homomorphism;
(¢) L/R, isa CBL.

Proof. (a) xva =yvaand z’'va =y va imply
(xaz')va = (xva)a(x'va) = (yva)a(y' va) = (yay')va,

so that xR,y and 2’ R, y" imply (zAaz") R,(y Ay’). Now suppose that, for each a in some

set of indices, z, R, v,, i.e. z,va = y, aa. Clearly V(z, va) = V(y,va), so that
(Vo,)va = (Vy,)va,

ie. (Vx,) R (Vy,).

(b) Let z = Vz,. It is obvious that 2 is an upper bound to the 2,. Suppose § is
another upper bound. Then there exist elements §, and z, such that y,va = yva,
z,va = z,va and u, > x for each a. But then y; vz, = y,, sothaty, vz, va =y va.
It follows that yvaz,va =yva and so yvzva =yva, i.e. (yvz) e, so that § > 2.
This means that 2 is the Lu.b. of the 2,,i.e. (Vz,)* = VZ,.

(c¢) Exactly as for R,.

3. Subspaces. Our example of quasi-compactness is an obvious case of a paratopo-
logical property. Less obvious examples can be based on a paratopological form of the
property of being a subspace (more precisely: homeomorphic to a subspace) of a given
topological space. (All topological spaces will be assumed to be 7j-spaces.) Let

Downloaded from https://www.cambridge.org/core. Edith Cowan University Library, on 01 Jul 2020 at 10:18:16, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/50305004100037658


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100037658
https://www.cambridge.org/core

An abstract theory of topological subspaces 199

Y be a subspace of X and f:Y — X be its injection map. Since the open sets of ¥ are
the traces of open sets of X, the inverse map f~! is epimorphic. The following proposi-
tion asserts the converse.

ProrosrTioN 2. If f-1: L(X) - L(Y) is epimorphic, then Y is a subspace of X and
its injection map.

Proof. To prove that f is monomorphic choose two points, p and q of ¥ and suppose
that there is an open set O, which contains p but not ¢. Since f~! is epimorphie, there
is an open set U such that f~}(U) = O. But then f(p) + f(g). Thus f embeds Y in X and
it is easy to see that this embedding is homeomorphic.

Proposition 2 suggests the definition

DerintTION 1. A subspace of a CBL, L, is a couple (H,f) where H is a CBL and
J: L — H is an epimorphic V-homomorphism.

Let L be a fixed CBL and S(L) the set of its subspaces. We order S(L) by defining
(K, h) < (K',h') to mean that there exists an epimorphic ¥V-homomorphism g: K’ - K
such that A = gh’, i.e.

K’ L
B

10 /h

K/

Prorosrrion 3. If (K,h) and (K',k') are identified whenever (K,h) < (K',h’) and
(K', k') < (K, }), then S(L) is a complete lattice under the ordering L. Moreover, S(L)
18 identical with the complete lattice R(L) of V-congruence relations on L.

Proof. Suppose that R € R(L) and A is a canonical map L — L/R. Then (L/R,h)isa
subspace of L. On the other hand if (K, f) is a subspace and xRy is defined by f(z) = f(y),
we can find an isomorphism g: K < L/R such that gf = h. Thus (K,f) and (L/R,k)
are identified in S(L). Finally, the order of S(L) coincides with the order of R(L) since
if B and R’ correspond to K and K', (K, k) < (K’, ?’) if and only if zR'y implies xRy,
ie. B < R in R(L). The join of (R,) in R(L) is constructed by defining 2Ry by xR,y
for all a. Hence the join in S(L) of (K,,k,) is constructed by defining zRy as
‘ho(x) = hy(y) for all &’, and forming L/R. The join is then (L/R, k).

DErFINITION 2. (2) An open subspace of L is a subspace of the form (C(z), 1) where
C(x) ={z:ze Land z < z} and i(2) = z A 2.

(b) A closed subspace of L is a subspace of the form (L|C(x), k) where L|C(x) is the
quotient of L by the V-congruence relation u = v<u vz = v vz and b is the canonical
map L - L|C(z).

Prorosrtion 4. The map C: L — S(L) defined by C(x) = (C(x), %) is a V-homomorphism.
Thus L s the lattice of open subspaces of S(L).

Proof. Let x, € L, i,(2) = z A &,, 1(2) = 2 A Vz,. Define uRvby ‘i (u) = i,(v) for all
@’. Then uRv implies i(u) =unVz, = Viuaz,) = i(v).

On the other hand i(u) = i(v) evidently implies u Az, = v-Az,, since

UAT, = (WA V) Az,
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200 SEYMOUR PAPERT
It follows that (C(Vz,),%) is the join of (C(z,),?,). Now let x,y € L, i(2) = zaz,
j(z) =zay and k(z) = zazay. It is evident that (C{zay), k) < (C(x),2), (C(y),5).
Suppose that (k, k) < (C(z), 1), (C(y),5). Now
k(u) = k(v) == urxry = Vazay

=>J(uAz) =jvaz)

= h{uaz) = h(vaz)

= h{u) AR(x) = h(v) Ah(z)

= h{u) = h(v) since h(x) =Iin K.
Thus (K, k) < (ClxAay), k).

ProrposiTION 5. (C(x),7) and (L[C(z),h) (b canonical) are unigue complements in
S(L).

Proof. (i) Let (K,f) < (C(z),3)A(L/C(x),h). For u,vel, flu)=f(v) if either
2(u) = #(v) or h(u) = h(v). But i(x) =1 = i(Il) and h(z) = 0. Thus in K, 0=1, ie.
(Kaf) = 0.

(i) Let (K,f) = (C(x),3) v(L/C(x), k). For w,ve L,

fw) = f(v) = [i(x) = 3(v) and k(x) = h(v)]
=>[uar=varanduve =vvz]

=u =9, since Lisdistributive.

Thus K = L and fis an automorphism, i.e. (K, f) = I, by the rule of identity in S(L).
(iii) Suppose that (K, A')is a complement of (C(z), 7). It is easy to see that h'(x) =

It follows that if wvz =wvvz, h'(u)=h'(v). Suppose on the other hand, that

h'(u) = k'(v). Then h’'(wvzx) = k'(vvz) and, by definition

(uvz) =i(vva).

Thus wvz = vvz, since the congruence relation corresponding to (K, k) v (C(x), 1) is,
by hypothesis, the equality relation. Hence A'(u) = #'(v) if and only if uve =vvz
and (K,?') = (L/C(x), ').

(iv) In the same way one can prove that (L/C(x), k) has no other complement.

ProrosiTioN 6. (a) The correspondence (C(x), t) — (L/C(x), h) is a V-anti-iso-
morphism.

(b) The joint of any finite number of closed subspaces and any intersection of closed
subspaces are closed subspaces.

Proof. We have to prove
(@) (L/C(x),h) v (LIC(y).f) = (L[C(xAy),q).
) AL/C(x,), k) = (L|C(Vz,), k), where k, f, g, k, are canonical. Let

(L{R,g') = (L|C(x), k) v (L|C(y).[)-

uRv<uvr=vva and uvy=ovy<=uv(@Ay) =vVv(TAy),

Then
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An abstract theory of topological subspaces 201
so that L/R is L|C(x Ay), which proves (a).

LiC(=,)
ha
' o\
LiC(Vz,) L

Y

LR
Now let (L/R,g') = A(L[C(z,), k,). For each a,
uve, = vve, >uv Ve, =vvVx, sothat (L/C(Vx,),h) < (L|R,g').

On the other hand ¢'(z,) = 0, for all a, so that if uv Vz, = vv Vx,, ¢'(u) = g'(v), ie.
h(u) = h(v)=>g'(u) = g’'(v). It follows that (L/R,g’) < (L/C(Vz,),k), and we have
proved (b).

DEFINITION 3. (@) Forse S(L), 8= A(t € S(L), closed, s < t).
(®) If s = (K,h) we write § = (K, k).

ProposrTioN 7. (a) s = S if and only if s is closed.

(0) s < timpliess < 1.

(¢) 0=0,I=1.

(d) §=35.

(€) svt=35vi

Proof. Obvious.

The following propositions, which are easy to prove, illustrate paratopological
theorems of subspaces.

ProrosiTioN 8. Let L be a quasi-compact. Then

(@) If s = (K, h) is a closed subspace of L, K is quasi-compact.

(b) If (8,) is a family of subspaces with the finite intersection property in the order of
S(L), AS, + 0.

(¢) A finite join of quasi-compact subspaces is quasi-compact.

DEerrviTION. A CBL 18 connected if no element except 0 and I has a complement.
A subspace s = (K, h) is connected if K is connected.

ProrosiTioN 9. (a) The closure of a connected subspace is connected.
(0) If sat + 01n S(L) and if s and t are connected subspaces, then svt is connected.

4. Products and Tychonoff’s theorem. The notation of product of topological spaces
can be carried over in various ways to CBL. Of these the most interesting treats
products as category properties, the essential feature of the product X = 7X, of a
family of spaces X, being that any set of continuous functions f,: ¥ — X uniquely
determines a function f:Y - X such that f, = fp,, where p, is the projection
p,: X - Y,. These remarks suggest the following definitions, bearing in mind that
the operator L( ) is a contravariant functor, which maps the category of topological
spaces and continuous functions into the category of CBL and V-homomorphisms.
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202 SEYMOUR PaAPERT

DEerINITION (@) An L-category is a subcategory of the category of CBL and V-homo-
morphisms which we shall suppose to contain with any CBL, all its V-sublattices.

(b) Let C be an L-category and (L,) a family of objects of C. We say that the object L of
C is the C-product of (L,) if

(i) there exists a set (f,) of C-maps (projection maps) f,: L, — L;

(ii) any C-object K and family g,: L, - K of C-maps uniquely determines a C-map
g: L — K such that gf, = ¢,.

The C-product of a given family (L,) is different for different L-categories C, all
containing (L,) and, in particular, the product of a family L(X ) is not the same in the
L-category of all CBL as in the L-category of CBL of the form L(X). Nevertheless,
interesting theorems on products can be proved without fixing a particular C-category.
For example:

Prorosrrion 10. Let C be an L-category containing the two elements lattwe K. A
C-product of quasi-compact C-objects (L,) is quast compact.
To prove this proposition, we first prove two lemmas.

Lemwma 1. A OBL is quasi-compact if and only if I is not the joint of all the elements of
a co-filter (i.e. an ideal which is not the whole lattice).

Proof. Let L be quasi-compact and suppose, if possible, that J is a co-filter the
join of whose elements is I. There must exist a finite subset z,, ..., z, of elements of J
suchthatz,va,v...vz, = I. But thisimplies that  isinJ,i.e..J = L,whichisimpossible.
Conversely, suppose that there is a set (z,) such that Vz, = I but for which no finite
subset has I as its join. The set of finite joins of elements of (x,) is then the base of a
co-filter the join of whose elements is 1.

CoroLLARY. An ultra-co-filter, J, on a quasi-compact CBL contains all joins of its
elements, for if not such an element could be used to extend J to form a larger co-filter which
would not be the whole lattice.

Lemma 2. Let L be the C-product of (L,) and f,: L, — L the projection maps. Then
every element of L is the join of finite intersections of elements of the form f,(u,).

Proof. The infinite distributivity of CBL implies that the set L’ of joins of finite
intersections of elements of the form f,(u,) is a V-sublattice of L. By convention, L’
is a C-object. For clarity, we use the symbol f, for g, considered as a map into Z'.
Thus g,: L, > L’. By definition of product there is a C-map ¢: L — L’ such that
gf. = g.- Let f be the injection map f: L’ — L and define »': L - L by A’ = fg. Then
k'f, = fgf. = f9. = f,- But the definition of product assures us that there is a unique
map ¢': L — L such that ¢g’f, = f,. Hence ' is the identity map and L’ = L and the

lemma, is proved.
fa

L

L~

L

v

L, L,

v
LI
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Proof of Proposition 10. Let (f,) be the projections of L. Choose an ultra-co-filter
(maximal proper ideal), J, on L. We have to prove that V.J + I. For each a put
J, = (xeL,; f,(x)eJ). J,is a co-filter; let J, be an ultra-co-filter refining it. Since
L, is quasi-compact J, contains all joins of its elements. If y € J_, it is easily proved
that there is an element z € J,, such that zvy = I, i.e. J, is prime. Hence, if % is the
canonical map of L — L[J,, k,(y) = I, since &, (z) = 0. It follows that L[J, = K, the
two-element lattice, and 4,(2) = 0 or I depending on whether z € J/, or not. That k,
is a V-homomorphism follows from the fact that J is a V-ideal, by the corollary of
Lemma 1. Since L is the product of the L, there is an & such that b, = Af,. We shall
show that h carries J into 0, so that 2(VJ) = 0, which implies VJ = I. Every element of
L is the join of finite intersections of elements of the form f,(«). But the prime property
of J implies that it must be generated by elements f,(«) which themselves belong to
J, i.e. by f,(u) with w e J,. But then A, (u) =0, so that Af (u) = 0. Thus k(zx) =0
for all z € J. This completes the proof. '

I wish to acknowledge the generous encouragement of Prof. C. Ehresmann and
digcussions with J. Benabou and D. Papert. The term paratopology is borrowed from
Ehresmann but is used here in a different sense.
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