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1. Introduction. The open subsets of a topological space X form a complete Brou-
werian, i.e. distributive and pseudo-complemented lattice L(X). Many topological
properties of X can be formulated as properties of L(X), although, in general, X is
not determined by L(X). Obvious examples are quasi-compactness and connectivity:
X is quasi-compact if any set of elements of L(X) whose join is / has a finite subset
whose join is / ; X is connected if no element of L(X) has a complement. These properties
which we shall call 'paratopological', can be defined for lattices that are not of the
form L(X), and many topological theorems can be proved in this more general context.
The purpose of this paper is to develop sections of general topology as part of the
theory of complete Brouwerian lattices (CBL).

2. Notations and some general properties of CBL. Let L and K be complete lattices.
A homomorphism f:L^~ K will be called a F-homomorphism if /(Vxa) = Vf(xa)
for arbitrary sets {xa} of elements of L. Similarly an equivalence relation R will be
called a F-equivalence relation if xaRya implies (Vxa)R(Vya). L is a F-sublattice of
K if it is a sublattice closed under arbitrary iT-joins. Thus, the lattice of open sets
L(X) is a F-sublattice of the lattice of all subsets of the abstract set X, and the inverse
map/-1: L(Y) -> L(X) induced by a continuous map/ : X -> Y is a F-homomorphism.

Let R be an equivalence relation on a lattice L and x the equivalence class containing
the element x. We recall that the set of equivalence classes is a lattice, LjR, with respect
to the order denned by

x < Qo(Ex')(Ey')(x'Rx&,y'Ry&x' < y').

Let a be an element of a CBL, L, and define the relation Ra by

xRayoa'Ax = a Ay.

PROPOSITION 1. If Lisa CBL then

(a) the relation Ra is a V-equivalence relation;
(b) the canonical map f: L -> LjRa is a V-homomorphism;
(c) the quotient L\Ra is a CBL.

Proof, (a) xRa and x'Ray' imply xsa = ysa and x' A a = y' A a, so that

x A x' A a = y A y' A a,
13-2

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100037658
Downloaded from https://www.cambridge.org/core. Edith Cowan University Library, on 01 Jul 2020 at 10:18:16, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100037658
https://www.cambridge.org/core


198 SEYMOUR PAPBRT

i.e. (xAx')R(y Ay'). Suppose that for each a in some set of indices (xx)Ra(ya), i.e.
xat\a = yaha. This implies V(xaha) = V(yaAa) and, by the infinite distributivity of
CBL, a A Vxa = a A Vya, i.e. (Vxa) Ra( Vya).

(b) Let x = Vxa. We shall show that x = Vxa. Clearly x is an upper bound to the xa.
Suppose that # is another upper bound, i.e. y > xa for each a. This means that there
exist y' and x'a such that y' A a = y A a, x'a A a •= XXA<Z and 2/' > x'a. But

y' > ^ => y' A x'a = x'a => y' A x'a A a = x'a A a => y A xa A a = xa A a.

By the infinite distributivity law it follows that yAXACU = XACI, whence (yAX)S = £,
i.e. § A£ = £, i.e. y > x. Thus 5 is the l.u.b. of the xa, i.e. x = Vxa.

This proves that f(x) = x is a F-homomorphism.
(c) That i//-Bo is a CBL follows immediately since

V(ZAXJ= V(f(z)Af(xa))

= f(V(ZAXa))

= f(ZAVxa)

= f[ZAVxa)

We shall in the sequel denote by C(a) the set {x e L; x < a} and by L/G(a) the quotient

We shall make special use also of quotients LjR'a where xR'ayoxva = yva.

PROPOSITION 1'.

(a) R'a is a V-equivalence relation;
(b) The canonical mapf: L ->• HR'a is a V-homomorphism;
(c) L/R'aisaCBL.

Proof, (a) xva = yva and x' va = y'va imply

') va = (xva) A(X'va) = (yva)A(y'va) = (yAy')va,

so that xi?^?/ a n d #'-Ra 2/' imply (̂  A x') R'aky A 2/')- Now suppose that, for each a. in some
set of indices, xaR'aya, i.e. xa va = ya A a. Clearly F(a;a va) = F(ya va), so that

( F x j v a = (Vya)va,
i.e.(Vxa)R'a(Vya).

(b) Let x = Fa;a. It is obvious that x is an upper bound to the xa. Suppose y is
another upper bound. Then there exist elements y'a and x'a such that y'ava = yva,
x'ava = xava and #|, > x'a for each a. But then y'avx'a = y'a, sothaty'avx'xva = y' va.
I t follows that yvxava = yva and so yvxva = yva, i.e. (yvx) e #, so that $ > x.
This means that x is the l.u.b. of the £a, i.e. (Vxaf = Vxa.

(c) Exactly as for Ra.

3. Subspaces. Our example of quasi-compactness is an obvious case of a paratopo-
logical property. Less obvious examples can be based on a paratopological form of the
property of being a subspace (more precisely: homeomorphic to a subspace) of a given
topological space. (All topological spaces will be assumed to be T0-spaces.) Let
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Y be a subspace of X and/: Y -*• X be its injection map. Since the open sets of Y are
the traces of open sets of X, the inverse map/"1 is epimorphic. The following proposi-
tion asserts the converse.

PROPOSITION 2. / / /~1:Z(X) -> L(Y) is epimorphic, then Y is a subspace of X and
its injection map.

Proof. To prove tha t / i s monomorphic choose two points, p and q of Y and suppose
that there is an open set 0, which contains p but not q. Since/"1 is epimorphic, there
is an open set U such that/~1((7) = 0. But then f(p) 4= f(q). Thus/embeds Y in X and
it is easy to see that this embedding is homeomorphic.

Proposition 2 suggests the definition

DEFINITION 1. A svhspace of a CBL, L, is a couple (H,f) where H is a CBL and
f-.L^-H. is an epimorphic V-homomorphism.

Let L be a fixed CBL and S(L) the set of its subspaces. We order S(L) by defining
(K, h) < (Kr, h') to mean that there exists an epimorphic F-homomorphism g:K' -*• K
such that h = gh', i.e.

PROPOSITION 3. / / (K, h) and (K1, h') are identified whenever (K, h) < (K1, h') and
(K1', h') < (K, h), then S(L) is a complete lattice under the ordering L. Moreover, S(L)
is identical with the complete lattice R(L) of Y-congruence relations on L.

Proof. Suppose that R e R(L) and A is a canonical map L -+ LjR. Then (L/R, h) is a
subspace of L. On the other hand if (K,f) is a subspace and xRy is defined hyf(x) = f(y),
we can find an isomorphism g: K^LfR such that gf = h. Thus {K,f) and (L/R,h)
are identified in S(L). Finally, the order of S(L) coincides with the order of R{L) since
if R and R' correspond to K and K', (K, h) < (K', h') if and only ifxR'y implies xRy,
i.e. R < R' in R{L). The join of (i2a) in R{L) is constructed by defining xRy by xRay
for all a. Hence the join in S(L) of (Ka,ha) is constructed by denning xRy as
'ha{x) = ha(y) for all a', and forming L\R. The join is then (L/R, h).

DEFINITION 2. (a) An open subspace of L is a subspace of the form (G(x),i) where
C(x) = {z:z e L and z < x} and i(z) = z A X.

(b) A closed subspace of L is a subspace of the form (L/C(x), h) where L/C(x) is the
quotient of L by the V-congruence relation u = vouv x = v v x and h is the canonical
map L -> LjC(x).

PROPOSITION 4. The map C:L-> S(L) defined by C(x) = (O(x), i) is a V-homomorphism.
Thus L is the lattice of open subspaces of S(L).

Proof. Let xa e L, ia(z) = z A xa, i(z) = z A Vxa. Define uRvhj cia(u) = ia(v) for all
a'. Then uRv implies .. . T, T7. . .. .

r %{u) = u A Vxa = V(uhxa) = i(v).

On the other hand i(u) = i(v) evidently implies UAxa = V-A xa, since

U A Xa = (U A Vxa) A Xa.
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200 SEYMOUR PAPERT

It follows that (G(Vxa),i) is the join of (C(xa),ia). Now let x,yeL, i(z) = ZAX,
j(z) = zAy and k{z) = zsx\y. It is evident that (G(xAy),k) < (C(x),i), (C(y),j).
Suppose that (k, h) < (G(x),i), (C(y),j). Now

k(u) = k(v) =>UAx\y = V AXAy

=>J(UAX) =J(VAX)

=> h(u AX) = h(v A x)

=> h(u) A h(x) = h(v) A h(x)

=> h(u) = h(v) since h(x) = I in K.
Thus (K,h) < (C(xAy),k).

PROPOSITION 5. (C(x), i) and (L/C(x),h) (h canonical) are unique complements in
S(L).

Proof, (i) Let (K,f) < (C(x),i)A(LIC(x),h). For u,veL, f(u) =f(v) if either
i(u) = i(v) or h(u) = h(v). But i(x) = I — i(I) and h(x) = 0. Thus in K, 0 = / , i.e.
(#,/) = 0.

(ii) Let (K,f) = (C(x),i)v{LIC(x),h). Fovu,veL,

f(u) = f(v) => \i{u) = i(v) and h(u) = h(v)]

^>[UAX = VAX and u v x = v v x]

=> % = v, since L is distributive.

Thus K = L and/is an automorphism, i.e. (K,f) = I, by the rule of identity in S(L).
(iii) Suppose that (K, A') is a complement of (C(x), i). It is easy to see that h'(x) = 0.

It follows that if uvx = vvx, h'(u) = h'(v). Suppose on the other hand, that
h'(u) = h'(v). Then h'(uvx) — h'(vvx) and, by definition

i(uvx) = i(vvx).

Thus uvx = vvx, since the congruence relation corresponding to (K,h)v(C(x),i) is,
by hypothesis, the equality relation. Hence h'(u) = h'(v) if and only if uvx — vvx
and (K,h') = (LIC(x), h').

(iv) In the same way one can prove that (LjC{x), h) has no other complement.

PROPOSITION 6. (a) The correspondence (C(x), i) -> (LIC(x), h) is a V-anti-iso-
morphism.

(b) The joint of any finite number of closed subspaces and any intersection of closed
subspaces are closed subspaces.

Proof. We have to prove
(a) (LIG(x),h)v(LIC(y),f) = (LIC(xAy),g).
(b) A(LIC(xa),ha) = (L/C(Vxa),h), where h,f, g, ha are canonical. Let

(LIB,g') = (LIC(x),h)v(LIC(y),f).
Then

uRvouvx = vvx and uvy = vvyouv(xAy) = vv(xAy),
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so that LjR is LjC(xAy), which proves (a).

LIC(xa)

A
LjR

Now let {LjR,g') = A.{LjC{xa),ha). For each a,

uvxa = vvxa^>uw Vxa = vv Vxa so that (L/C(Vxa),h) < (L/R,g').

On the other hand g'(xa) = 0, for all a, so that if u v Vxa = v v Vxa, g'(u) = g'(v), i.e.
A(«) = h(v)=>g'(u) = gr'(t;). I t follows that (L/B.g') < (LIG(Vxa),h), and we have
proved (b).

DEFINITION 3. (a) For s e S(L), 8 = A(t e S(L), closed, s < t).
(b) Ifs = (K, h) we write 8 = (K, h).

PROPOSITION 7. (a) s = S if and only if sis closed.
(b) s < t implies s <t.
(c) 0 = 0, / = / .
(d) s = s.
(e) svt = svt.
Proof. Obvious.
The following propositions, which are easy to prove, illustrate paratopological

theorems of subspaces.

PROPOSITION 8. Let Lbea quasi-compact. Then
(a) If s = (K, h) is a closed subspace of L, K is quasi-compact.
(b) If (Sa) is a family of subspaces with the finite intersection property in the order of

S(L), ASa 4= 0.
(c) A finite join of quasi-compact subspaces is quasi-compact.

DEFINITION. A GBL is connected if no element except 0 and I has a complement.
A subspace s = (K, h) is connected if K is connected.

PROPOSITION 9. (a) The closure of a connected subspace is connected.
(b) If sAt =)= 0 in S(L) and if s and t are connected subspaces, then svt is connected.

4. Products and Tychonoff's theorem. The notation of product of topological spaces
can be carried over in various ways to CBL. Of these the most interesting treats
products as category properties, the essential feature of the product X = nXa of a
family of spaces Xa being that any set of continuous functions fa: Y -> Xa uniquely
determines a function f:Y->X such that fa = fpa, where pa is the projection
pa:X ->• Ya. These remarks suggest the following definitions, bearing in mind that
the operator L( ) is a contravariant functor, which maps the category of topological
spaces and continuous functions into the category of CBL and F-homomorphisms.
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DEFINITION (a) An L-category is a subcategory of the category of CBL and V-homo-
morphisms which we shall suppose to contain with any CBL, all its V-sublattices.

(b) Let C be an L-category and (La) a family of objects of C. We say that the object L of
C is the C-product of (La) if

(i) there exists a set (fa) of C-maps (projection maps)fa:La -> L;
(ii) any C-object K and family ga:La->Kof C-maps uniquely determines a C-map

g:L-> K such that gfa = ga.
The C-product of a given family (La) is different for different L-categories C, all

containing (La) and, in particular, the product of a family L(Xa) is not the same in the
.L-category of all CBL as in the L-category of CBL of the form L(X). Nevertheless,
interesting theorems on products can be proved without fixing a particular (7-category.
For example:

PROPOSITION 10. Let C be an L-category containing the two elements lattice K. A
C-product of quasi-compact C-objects (LJ is quasi compact.

To prove this proposition, we first prove two lemmas.

LEMMA 1. A CBL is quasi-compact if and only if I is not the joint of all the elements of
a co-filter (i.e. an ideal which is not the whole lattice).

Proof. Let L be quasi-compact and suppose, if possible, that J is a co-filter the
join of whose elements is / . There must exist a finite subset x1;..., xn of elements of J
such that xxva;2v... vxn = I. But this implies that/is in J,i.e. J= L, which is impossible.
Conversely, suppose that there is a set (xa) such that Vxa = I but for which no finite
subset has / as its join. The set of finite joins of elements of (xa) is then the base of a
co-filter the join of whose elements is /.

COROLLARY. An ultra-co-filter, J, on a quasi-compact CBL contains all joins of its
elements, for if not such an element could be used to extend J to form a larger co-filter which
would not be the whole lattice.

LEMMA 2. Let L be the C-product of (La) and fa:La^- L the projection maps. Then
every element of Lis the join of finite intersections of elements oftheformfa(ua).

Proof. The infinite distributivity of CBL implies that the set L' of joins of finite
intersections of elements of the form fa(ua) is a F-sublattice of L. By convention, L'
is a O-object. For clarity, we use the symbol/„ for ga considered as a map into L'.
Thus ga:La->L'. By definition of product there is a (7-map g:L->L' such that
gfa = ga. Let / be the injection map f:L' -»• L and define h':L^-Lhjh' = fg. Then
h'f* = fdfa = fya = fa- But *ne definition of product assures us that there is a unique
map g':L->L such that g'fa = fa. Hence h' is the identity map and L' = L and the
lemma is proved.

'" -L

f//
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Proof of Proposition 10. Let (/a) be the projections of L. Choose an ultra-co-filter
(maximal proper ideal), J, on L. We have to prove that VJ =(= / . For each a put
Ja = {x e La; fjx) e J). J a is a co-filter; let J'a be an ultra-co-filter refining it. Since
La is quasi-compact J'a contains all joins of its elements. If y e J'a, it is easily proved
that there is an element x e J'a such that xvy = I, i.e. J'a is prime. Hence, if ha is the
canonical map of L -*• LjJ'a, ha(y) = I, since ha(x) = 0. It follows that L/J'a = K, the
two-element lattice, and ha(z) = 0 or / depending on whether z e J'a or not. That Aa

is a F-homomorphism follows from the fact that J'a is a F-ideal, by the corollary of
Lemma 1. Since L is the product of the La, there is an h such that ha = hfa. We shall
show that h carries J into 0, so that h( VJ) = 0, which implies VJ + / . Every element of
L is the join of finite intersections of elements of the ioxvafju). But the prime property
of J implies that it must be generated by elements fa{u) which themselves belong to
J, i.e. by fa(u) with u e Ja. But then Jia{u) = 0, so that hfa(u) = 0. Thus k(x) = 0
for all x eJ. This completes the proof.

I wish to acknowledge the generous encouragement of Prof. C. Ehresmann and
discussions with J. Benabou and D. Papert. The term paratopology is borrowed from
Ehresmann but is used here in a different sense.
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