
OzLogo

LogoFile
Magazine of OzLogo, a Logo Special Interest Group of the CEGV and MA V.

Inside ...

The Phantom Tollbooth - Integrated Unit for Year 6
SCANTOOL - Relocating Scanned Graphics
Micro Worlds - A Review
Teaching Logo Writer Programming
How to Run a Sports Day

Vol. 2, Nos. I & 2

Animals_ and Elements - Binary Decision Programs for Science •
Dear Dr Turtle

00
"'v

v....A..J-J

The Creative Tool Kit Every Student Needs

Micro Worlds
Designed by the people who ~LCSr brought you LogoWriter ~~it¾1,~-

Cross-Curricula:
~~,'\4~,·~-

~··~ •

MicroWorlds Project Builder
o\{j}IJ,\ •~ ¼·~~ rr

• A learning envirorvnent that
encourages students to develop
their own problem-solving
strategies while creating school
projects.

• A Project book that takes you
through the entire process of
creating cross-curricula projects,
step by step.

• Drawing tool (and 140 colours)
for creating backgrounds for
stories.

• Infinite number of turtles that can
be set to different sizes and
shapes, and colours.

• Word-processing features such
as multiple text boxes, different
fonts, sizes, styles, and colours,
plus the ability to place text over
graphics, or in any direction.

• Easy to add buttons, sliders and
hot spots that help start and stop
animation, music and other
special effects, as well as create
hypermedia links.

Micro Writer's
Language Arts
• A Projects book full of writing

projects that illustrate how
language and art can be used
together to communicate ideas
and emotions. Projects include
Haiku Visual Poetry, Advertising,
Conquain, and more.

By Phone
Call Toll Free 008 337 055 or
(03) 786 71 n in the
Melbourne Metro area

Both
packages l' , •
include _,,c_ " ~~...._._,,, ,:i. •
• Tools to write text _ ¢ •

In any shape, style, ..,.;;...,:o ;·;> ·
colour or size, or In _;:;;.,,-.
any direction.
Drawing and other visual
effects' tools such as anima-
tion, scrolling or flashing text.

• A music and sound centre that
makes it easy to set words to
music.

• On-disk project starters, ready-
made background scenes, and
project samples.

• A new and comprehensive on-
Ii ne Help System.Teachers or
students can even create their
own project-specific information
balloons.

Package Contents:
• Program disks includes on-disk

sample projects
• I\A icroWorlds Project Book
• Teacher's Resource
• HowToBook
School's Pricing
Set $130
6 User Lab Pack $585
Unlimited Site Licence $1595

By Fax
Fax your order to us on
(03) 785 3599

System Requirements:
Macintosh colour computers (LC's
colour Classics or better) 4Mb,
System 7 or higher Hard Drive
Available from:

38 Hartnett Drive Seaford, Vic 3198
Ph: (03) 786 7177 Fax: (03) 785 3599

ORDERS
By Mail
Simply complete your order
details and mall with your
Purchase Order, credit card
details or cheque to:
Repty Paid AAA 146,
P O Box 2053 Carrum Downs
Vic3201

Editorial

This issue contains a report
from the very successful 1993
International Logo Confer-
ence held in Melbourne.

The first Australian Logo
conference was "Logo in
Australia -Ten Years On",
hosted by the Computer
Education Group of Victoria
and held in 1985 - ten years
after Logo was first used in
this country (by Sandra Wills
in Tasmania). International
speakers at that conference
were Hal Abelson from
M. I.T. and David Squires
from Chelsea College in the
U.K. A browse through the
Proceedings reveals Logo
work already well developed
in primary and secondary
schools, teacher education
institutions, and at least one
kindergarten, as well as a
busy and productive research
community.

Contents

Another Logo-specific con-
ference, the International
Logo and Mathematics
Education Conference, was
held at lake Tinaroo in
Queensland in 199 I.

Papers on Logo work are
included of course in many
other conferences. However
there is great value in the
focused Logo conferences as
well. The common back-
ground knowledge of partici-
pants enables issues and ideas
to be examined at much
greater depth than otherwise,
and the enthusiasm of experi-
enced users supports novice
attendees in a very productive
way. We saw all of this writ
large at this year's confer-
ence. We hope that further
Logo conferences can be
arranged to maintain this
momentum.

Anne McDougall
Leon Guss

Editors

Editorial .. 3
Integrated Unit of Work for Year 64
Four Ne"' Logos Released 7
Review of the 1993 International Logo

Conference .. 8
SCANTOOL .. 10
Cover Graphic: OWL 13
Review of Micro Worlds 14
Teaching Logo Writer Programming 16
Interactive Problem Solving - Review 20
Secret Messages .. 20
DOODLE: A Macintosh LogoWriter

for Toddlers ... 21
Animals and Elements : Binary Decision

Programs ... 22
How to Run a Sports Day 26
Dr Turtle ... 27

The Creative Tool Kit Every Student Needs

Micro Worlds
Designed by the people who ~LCSr brought you LogoWriter ~~it¾1,~-

Cross-Curricula:
~~,'\4~,·~-

~··~ •

MicroWorlds Project Builder
o\{j}IJ,\ •~ ¼·~~ rr

• A learning envirorvnent that
encourages students to develop
their own problem-solving
strategies while creating school
projects.

• A Project book that takes you
through the entire process of
creating cross-curricula projects,
step by step.

• Drawing tool (and 140 colours)
for creating backgrounds for
stories.

• Infinite number of turtles that can
be set to different sizes and
shapes, and colours.

• Word-processing features such
as multiple text boxes, different
fonts, sizes, styles, and colours,
plus the ability to place text over
graphics, or in any direction.

• Easy to add buttons, sliders and
hot spots that help start and stop
animation, music and other
special effects, as well as create
hypermedia links.

Micro Writer's
Language Arts
• A Projects book full of writing

projects that illustrate how
language and art can be used
together to communicate ideas
and emotions. Projects include
Haiku Visual Poetry, Advertising,
Conquain, and more.

By Phone
Call Toll Free 008 337 055 or
(03) 786 71 n in the
Melbourne Metro area

Both
packages l' , •
include _,,c_ " ~~...._._,,, ,:i. •
• Tools to write text _ ¢ •

In any shape, style, ..,.;;...,:o ;·;> ·
colour or size, or In _;:;;.,,-.
any direction.
Drawing and other visual
effects' tools such as anima-
tion, scrolling or flashing text.

• A music and sound centre that
makes it easy to set words to
music.

• On-disk project starters, ready-
made background scenes, and
project samples.

• A new and comprehensive on-
Ii ne Help System.Teachers or
students can even create their
own project-specific information
balloons.

Package Contents:
• Program disks includes on-disk

sample projects
• I\A icroWorlds Project Book
• Teacher's Resource
• HowToBook
School's Pricing
Set $130
6 User Lab Pack $585
Unlimited Site Licence $1595

By Fax
Fax your order to us on
(03) 785 3599

System Requirements:
Macintosh colour computers (LC's
colour Classics or better) 4Mb,
System 7 or higher Hard Drive
Available from:

38 Hartnett Drive Seaford, Vic 3198
Ph: (03) 786 7177 Fax: (03) 785 3599

ORDERS
By Mail
Simply complete your order
details and mall with your
Purchase Order, credit card
details or cheque to:
Repty Paid AAA 146,
P O Box 2053 Carrum Downs
Vic3201

Editorial

This issue contains a report
from the very successful 1993
International Logo Confer-
ence held in Melbourne.

The first Australian Logo
conference was "Logo in
Australia -Ten Years On",
hosted by the Computer
Education Group of Victoria
and held in 1985 - ten years
after Logo was first used in
this country (by Sandra Wills
in Tasmania). International
speakers at that conference
were Hal Abelson from
M. I.T. and David Squires
from Chelsea College in the
U.K. A browse through the
Proceedings reveals Logo
work already well developed
in primary and secondary
schools, teacher education
institutions, and at least one
kindergarten, as well as a
busy and productive research
community.

Contents

Another Logo-specific con-
ference, the International
Logo and Mathematics
Education Conference, was
held at lake Tinaroo in
Queensland in 199 I.

Papers on Logo work are
included of course in many
other conferences. However
there is great value in the
focused Logo conferences as
well. The common back-
ground knowledge of partici-
pants enables issues and ideas
to be examined at much
greater depth than otherwise,
and the enthusiasm of experi-
enced users supports novice
attendees in a very productive
way. We saw all of this writ
large at this year's confer-
ence. We hope that further
Logo conferences can be
arranged to maintain this
momentum.

Anne McDougall
Leon Guss

Editors

Editorial .. 3
Integrated Unit of Work for Year 64
Four Ne"' Logos Released 7
Review of the 1993 International Logo

Conference .. 8
SCANTOOL .. 10
Cover Graphic: OWL 13
Review of Micro Worlds 14
Teaching Logo Writer Programming 16
Interactive Problem Solving - Review 20
Secret Messages .. 20
DOODLE: A Macintosh LogoWriter

for Toddlers ... 21
Animals and Elements : Binary Decision

Programs ... 22
How to Run a Sports Day 26
Dr Turtle ... 27

An lntcgr,1tccl Unit of
\Vork Us,ng LogoWritcr

for Yc;ir 6

Lyn Tr,tton
Wesley College

(Elstcrrn-1ick C:i,npus)
Victoria

This paper describes an
integrated unit of work
around the novel The Phan-
tom Tollbooth by Norman
Juster. I have chosen this
novel because it is one of the
books suggested for the Year
5/6 Literature Course.

Chapter 14, The Dodecahe-
dron Leads The Way would
be appropriate for providing
computer programming
experiences using LogoWriter
to students in Year 6. In this
chapter we meet the Dodeca-
hedron:

As they argued, a most pecu-
liar little figure stepped
nimbly from behind the sign
and approached them ...

He was constructed (for that's
really the only way to de-
scribe him) of a large assort-
ment of lines and angles
connected together into one
solid many-sided shape •
somewhat like a cube that's
had all its comers cut off and

then had all its corners cut off
again. Each of the edges was
neatly labelled with a small
letter, and each of the angles
with a large one. He wore a
handsome beret on top, and
peering intently from one of
his several surfaces was a
very serious face ...

When he reached the car, the
figure doffed his cap and
recited in a loud clear voice:

'My angles are many
My sides are not few.
I'm the Dodecahedron
Who are you?'

'What's a Dodecahedron?'
inquired Milo, who was
barely able to pronounce the
strange word.

'See for yourself,• he said,
turning around slowly. 'A
Dodecahedron is a math-
ematical shape with twelve
faces.'

Just as he said it, eleven other
fac,s appeared. one on each
surface, and ,ach one wore a
different expression.

Aim of lhe Unit

The students will create
pentagonal faces and write
text to tell a story using
LogoWriter. The ability of

the individual students wiJJ
determine how many faces
they create. The more able
students will probably be able
to create twelve pentagonal
faces with text to tell a story
or a poem for each expres-
sion. Extension work would
be to create faces using trian-
gles or circles and write text,
create backgrounds for the
shapes, use colour, compose
music to accompany the

V

pages and use animation.
The content area is Literature
and Technology based and the
processes the students will
use are: Mathematics/geom-
etry, Language (reading,
writing, LogoWriter, thinking,
spelling), Art/graphics, Mu-
sic.

Knowledge To Be Gained

• The characteristics of a
pentagon.
• How to develop an algo-
rithm which is a set of in-
structions that can be
followed to draw the shape.
, How to write a program in
LogoWriter that will draw a
pentagon.
• How to solve problems.
• How to write and ilJustrate a
picture story book using
Logo Writer.
• Abstract thinking.

Other Curriculum Areas
Also To Be Developed

English:
• Reading the story The
Phantom Tollbooth by
Norton Juster.
• Writing text to accompany
the changing faces of the
Dodecahedron.
• Developing word lists of the
following:

- characters in the story
- mathematical terminol-

ogy - shapes, angles
- facial expressions to be

created
- names of precious stones

• Comprehension by under-
standing the Dodecahedron's
character and being able to
write suitable text to accom-
pany the facial expressions.
• Using some of the word in
the word list to develop a
spelling list.

Social Education:
• Working in co-operative
groups.

Graphics:
• Designing the layout of each
page and the whole story.
• Use of colour.
• Animation for the graphics
if appropriate.

Music:
• Creating musical accompa-
niment for the story.

Evaluation or the Unit

• The processes the students
experience as they work
through the unit - on-going
assessment.
• The finished product/the
faces created, the accompany-
ing text, background, use of
colour, animation and music.
These will be assessed ac-
cording to the ability of each
student.
• What the students learnt as a
result of the processes they
experienced.
• The enjoyment and knowl-
edge gained.
• The students will keep a
Learning Journal of their
experiences while creating the
faces and the story. This will
also include what they have
learnt.

Stage 1 Tuning In

This is to get the students
engaged in thinking about the
topic.

I. Introduce the book to the
students. Depending on the
ability of the students the
story could be read by the
teacher to the whole class as

part of the Literature progiain,
or the students could read the
story themselves.

2. The focus chapter for this
unit is The Dodecahedron
leads the way. This chapter
has been chosen because of
the potential to teach geom-
etry in a meaningful context.

3. After reading Chapter 14
the students work in pairs or
groups of three or four and
list the mathematical concepts
introduced in this chapter,
e.g. different words for dis-
tance, angles, pentagon,
twelve shapes, problem
solving, fractions. Make a
class li t of the mathematical
concepts. Ask students for
suggestions about what they
could create using Logo-
Writer. List these suggestions
on a chan or on &n overhead.
From these suggestions work
out what type of program-
ming th.ey could do to create a
story using the twelve faces of
the Dodecahedron.

Stage 2 FindJnc Out

Activities that will prepare the
students to write the
Logo Writer program for the
faces of the Dodecahedron:

I. In pairs list the characteris-
tics of a pentagon e.g. five

equal sides, five equal angles,
can be any size depending on
the length of the sides, the
size of the angles does not
change. Check their findings
with another pair and then
report back to the class. A
class chart is then developed
for future reference.

2. Create a pentagon using
straws and pipe cleaners (the
pipe cleaners are used as the
joiners where the angles meet
and the straws used as the
sides).

3. Create a 3D pentagon using
pipe cleaners and straws, with
a partner.

u
,,...._

4. Draw a pentagon on the
ground using chalk. Then
write an algorithm that will
give a robot directions on how
to walk out the shape of a
pentagon. By this stage the
students should have an
underslllnding of the charac-
teristics of a pentagon.

5. Using Logo Writer work out
the commands for drawing a
pentagon. Have the students
do this in the Command
Centre so they have the visual
experience.

6. When they have mastered
th.is write the procedure on the

•
v

flip side using the repeal
command.

eg.
TO PENTAGON
REPEAT 5 [FD 50 LT 72)
END

Write a procedure for a penta-
gon using variable inputs such
as:

TO PENTAGON :SIZE
SETH 90
REPEAT 5 [FD :SIZE LT
72)

END

This procedure will draw the
shape of the faces for the
Dodecahedron.

Next students have to investi-
gate the shapes page to enable
them to draw the expressions
on the faces that they create.
This activity is best done in
pairs teaming a more able
student with a less able stu-
dent. They will work together
using the Shapes page of
Logo Writer to create a face
on the pentagon for the Do-
decahedron. Write this
procedure on the flip side,
then write instructions for
how they created their Do-
decahedron face and pass it
on to another pair to see if
they can duplicate the same

face. This activity will illus-
trate the importance of clear
instrUctions and co-operation .
Each group of four will
discuss which insrructions
were clear and which ones
need to be fixed up. This is a
good activity for self evalua-
tion and appraisal.

Now each student will have
the skills to be able to create
the Dodecahedron faces. The
number of faces each student
will create will depend on his
or her ability and should be
evaluated accordingly.

Stage 3 Sorting Out

During this stage the students
will work on their own faces
and stories to create a picture
story book that can be pub-
lished and read to others in
the class or to students in the
lower grades. Students who
need extension work can
animate the faces, use colour,

a

design a background for each
page, use music to depict the
moods of the facial ellpres-
sions, write more text for each
face, or even write poems for
each face or about the twelve
faces.

Stage 4 Sharing Stories
With An Audience

The pu1]l0se of this learning
experience is for the students
to share the completed book
with an audience. Toe proc-
esses that were explored
while achieving this aim arc
also just as important as the
finished product and these
processes should also be
assessed in terms of what the
students learnt by producing
their stories. Once the stories
have been completed the

••

students could share the
stories on the television
monitor. Copies could also
be made for the class library
and the school library. After
the students have watched the
stories on the monitor they
may want to add special
features to their own story.
One of the best ways of
learning is to learn from your
peers.

Many other activities could be
added to those outlined. For

example, I have not elabo-
rated on the Language Area,
such as how I would develop
spelling li'sts from the word
lists that the students com-
piled, the discussions based
on the story that develop
comprehension or the proc-
esses the students would go
through before they write the
text for each page of their
story .

Reference

Juster, N. The Phantom
Tollbooth (1962) Lion.

FOUR Nc\'J Logos
Rclc.iscd'

P.iul N1cl1olson
Dc.ik1n Un1vcrs1ty
(Rusclcn Campus)

Victoria

Four new versions of Logo
have been released recently.
The really good news is that
they arc all free!

Brian Harvey of the Univer-
sity of California at Beril:eley
bas produced versions of
Berkeley Logo for Macintosh,
IBM and Unix computers.
The release includes a de-
tailed, formatted manual and

all the exercises from his
book, Computer Science
Logo Style, as well as the
source code for Logo itself.

The really nice feature of
Berkeley Logo is that the file
formats are identical across
the three versions. This
means that you could tart
working on a Logo program
on an IBM, save your work to
a floppy disk and later con-
tinue working on your file on
a Macintosh with a FDHD
drive and DOS Mounter or
similar software installed. In
a networked cla room it
means that students would not
have to worry about the type
of computer they used to
work on Logo - their files
would function on both IBM
and Macinto h computers.
This is also true of the Unix
version but most schools
would not have suitable
hardware to run it.

There arc two variants of the
IBM Logo. One run on PC's
and XT's with 640k of
memory. The other runs on
AT' s or higher and uses
extended memory to increase
the size of the program that it
can execute.

The fourth Logo runs under
Windows 3 on IBM comput-
ers. It has some differences
from Berkeley Logo.

All the Logo ver ions are
freely available on the
SECAP computer bulletin
board (03 544-1513) in the
Logo files area. Modem
speeds up to 9600 baud and
MPN4 are supported.

A RcviC\'J of tt,e 1993
International Logo

Conference

Debor~ Goldman
l\1ount Scopus

Memorial College
Victoria

The who's who of logo
Came to speak. teach,

enthuse;
They left us with plenty
That we can now use.

The highlight of 1993 for
Logophiles who could be in
Melbourne in July was the
International Logo Confer-
ence, a conference dedicated
to the use, exploration, con-
cepts and research of Logo,
and hosted by the Methodist
Ladies' College, Kew.

Listening to, communicating
with, and having the opportu-
nity to meet international
gurus as well as our own
experts reinforced my belief
that there are a lot of people
who use Logo effectively.

The focus of the conference
seemed to me to be to pull
together people of all ability
levels in Logo, to re-evaluate
how, why and what to teach.
Knowledge links were ques-
tioned. Should we examine
the appropriation of informa-
tion by students through
children's eyes? I felt the
need to go back to basic
questions, to examine the
purpose and content as well as
the methods of teaching. Had
I been conditioned by an adult

world into presupposing how
children learn? Had I been
driven into a mind set? Does
Logo alone provide the stimu-
lus? Could there be some
other vehicle for learning
cognitive skills? Were the
experts really saying that
students can learn more than
we traditionally have said
they could?

Some of the answers Jay in
how Logo can be seen to
service many areas of teach-
ing and learning. It can be
seen to promote problem
solving skills, generate an
understanding of language
rules, and reinforce, extend
and highlight the thinking,
learning and teaching proc-
esses.

For me the highlight of the
conference was listening to
ldit Hare!. Her insight into
"Debbie's case", that of a
young non-achiever in the
conventional class, and the
difference made to her educa-
tion, personality, and overall
persona when she developed
her learning skills of fractions
through the use of Logo,
reinforced my beliefs that
Logo, used correct! y, can
challenge the way we teach
and the way students learn. It
is not enough lo say that
computers should be used to
enhance current educational
practices. Rather we need to
re-evaluate what and how we
are teaching.

Another insight came through
the workshop for the use of
Logo and language. Again
Logo was shown to enhance

and challenge the way we
assume students take lan-
guage skills on board. I found
many answers to my prob-
lems, but also found that there
were many more questions
raised. The challenge that
was thrown to the participants
was to explore new ways of
using Logo, and possible
ways of introducing Logo into
a traditional school selling.

The legacy for me was to
question the timing of teach-
ing certain mathematical
concepts, for example, when
should directed numbers and
the full Cartesian plane be
"taught"? Concepts such as
SETPOS and SETH that I
once left until much later are
now being introduced earlier
than usual. The result is that
students are exploring, de-
vouring, and learning freely.
I now make no assumptions
about limiting the students'
knowledge. They rise to the
challenge and are keen to
explore and bui Id their own
knowledge maps.

There are always complaints
that can be levelled at any
conference. Mine are that the
time was too short and there
were too many wonderful
sessions from which to select!

If you would like a copy of
the 1993 International Logo
Conference Proceedings
disk ($20 each) please
contact:

Community Education,
MLC
207 Barkers Road
Kew VIC 3101
Ph 274 6333, fax 819 2345

1993 International Logo Conference
Keynote and lnternat1onill Speakers and Topics

I

Paul Goldenberg - Modelling Language with Logo

Idit Hare! - Constructing Constructionism

Brian Harvey - Computer Science: Logo and Its Competitors

Barry Newell - Fuzzy Teaching

Linda Polin - Why I Haven't Given Up on Logo

Gary Stager - Logo and the Next Generation: Micro Worlds

Leslie Thyberg - Logo Writer and Artful Scribbling

Dan and Molly Watt - Action Research by Logo Teachers

From left to right: David Loader, Dan Watt, Idit Hare!, Gary Stager,
Molly Watt, Brian Harvey, Leslie Thyberg, Margaret Fallshaw, Barry

Newell, Linda Polin

SCANTOOL

Jenny Betts
John P.iul College

Queensland

The Question: What possessed a 12-year-old
child to create a tool such as this?
The An wer: The desire to be in control and to
instruct the computer to do exactly what the
child wanted it to do.

InstiJling these ideas into the mind of the
students I meet is a priority of mine. I believe
very strongly that the computer is an extremely
powerful tool; however, many users tend to let
the computer dominate them in areas where it
should not. Instead, the user should dominate
the power that the computer is able to generate.

The tool procedures labelled SCANTOOL were
written by the same student who wrote
DRAWTOOL [see last issue - Eds.], approxi-
mately nine months later. Why? Because there
were times when we would use a flatbed scan-
ner to scan pictures from magazines, only to
find that they were in the wrong position when
they were finally placed onto the Logo Writer
page. We could fiddle with the workings of the
scanner itself so that after many attempts at
rescanning, the picture would eventually be
located in a near-enough position, and that we
did. However we were still unable to control
the sizing, or to position the graphic in the exact
place on the page itself. Wasting time, attempt-
ing to scan and rescan pictures in order to get
the right look, was a problem that had to be
overcome, as students were choosing not to use
the scanner simply because they did not want to
waste the hours it took to get one picture right.
For these reasons this child decided it would be
easier to write a set of tool procedures to move
the image anywhere on the LogoWriter page as
well as enlarging or shrinking the graphic.

The following procedures are written in
Logo Writer for IBM.

How To Use the SCANTOOL

J. Go to a new page on which you wish to
work.

2. Type in the command centre GETTOOLS
"SCANTOOL. The computer will get the
procedures on the SCANTOOL page and
treat them as tool procedures. If you are
unfamiliar with tool procedures, consult your
Logo Writer manual.

3. When you are ready to scan, type START
in the command centre.

or
Load your graphic and type SCAN in the
command centre.

The SCANTOOL Procedures

TO START
cc
SHOW [LOAD PICTURE AND TYPE

SCAN.]
END

TO START.DRAW
TELLO
PU SETPOS :POS
FASTTURTLE
SETH 180 PU
MAKE'NUM 1
MAKE'DUB0
REPEAT :DDIST1 (SETY (LAST :POS)

MAKE "NUM11 REPEAT :DDIST
[DRAW1] SETH 90 FD 1 SETH 180
MAKE "DUB :DUB+ 1 IF :DUB= 2
[MAKE "DUB OJ MAKE "NUM :NUM +
1 IF :SIZE = "H [MAKE "NUM :NUM +
1] IF :SIZE= 'D (IF :DUB= 1 [MAKE
"NUM :NUM - 1]]]

cc
END

TO DRAW1
SETC (ITEM :NUM 1 THING (WORD

"llNE :NUM))
PD FD1 PU
MAKE 'NUM1 :NUM1 + 1
IF :SIZE= "H [MAKE "NUM1 :NUM1 + 1]

IF :SIZE= "D [MAKE "NUM1 :NUM1 - 0.5]
END

TO SCAN
CLEARNAMES
CCPU
MAKE "DIST2 11
TYPE [MOVE THE TURTLE TO THE TOP

LEFT HAND CORNER OF THE PART
YOU WISH TO SCAN AND PRESS
ENTER. USE F & S TO CHANGE THE
DISTTHAT IT TRAVELS.)

SCAN.MOVE
MAKE "POS1 POS
cc
TYPE [MOVE THE TURTLE TO THE TOP

RIGHT HAND CORNER OF THE PART
YOU WISH TO SCAN AND PRESS
ENTER. USE F & S TO CHANGE THE
DIST THAT IT TRAVELS.]

SCAN.MOVE
cc
MAKE "POS2 POS
TYPE [MOVE THE TURTLE TO THE BOT-

TOM LEFT HAND CORNER OF THE
PART YOU WISH TO SCAN AND
PRESS ENl"ER. USE F & S TO
CHANGE THE DIST THAT IT TRAV-
ELS.)

SCAN.MOVE
MAKE "POS3 POS
MAKE "DIST (LAST :POS1) -(LAST
:POS3)

MAKE "DIST1 (FIRST :POS1)- (FIRST
:POS2)

IF (FIRST :DIST) ="-[MAKE "DIST MINUS
:DISTI

IF (FIRST :DIST1) =•-[MAKE "DIST1
MINUS :DIST1)

cc
TYPE [PLEASE WAIT! SCANNING]
START.SCAN
END

TO SCAN.MOVE
NAME READCHAR "CH
IF :CH = 'H [SETH O FD :DIST2]
IF :CH = 'M [SETH 90 FD :DIST2]
IF :CH = "K [SETH -90 FD :OIST2)
IF :CH= "P [SETH 180 FD :DIST2]

IF :CH= "F [MAKE "DIST2 :DIST2 + 5]
IF :CH= "S [MAKE "DIST2 :DIST2 - 5]
IF :CH= CHAR 13 [STOP]
OUT?
SCAN.MOVE
END

TO OUT?
IF (FIRST POS) > 155 [BK :DIST2)
IF (FIRST POS) < -154 [BK :DIST2)
IF (LAST POS) > 90 [BK :DIST2]
IF (LAST POS) < -89 [BK :DIST2)
END

TO START.SCAN
ST
FASTTURTLE
PU SETPOS :POS1
SETH 180
MAKE"NUM 1
REPEAT :DIST1 [MAKE "LINE" LINE

MAKE (WORD "LINE :NUM) :LINE
SETH 90 FD 1 SETH 180 MAKE
"NUM :NUM + 1 SETY (LAST :POS1)]

cc
SHOW [WHEN READY TO START

DRAWING TYPE "DRAWj
END

TO DRAW
CCPU
TYPE [HALF, DOUBLE OR THE SAME

SIZE? (H, D OR S)]
NAME READCHAR "SIZE
IF NOT MEMBER? :SIZE [H D SJ
[DRAW STOP]

TYPE [COLOUR PINK, WHITE OR
BLUE? (P, W B)]

NAME READCHAR "COLOUR
IF NOT MEMBER? :COLOUR [P W BJ
[DRAW STOP]

MAKE 'DDIST :DIST
MAKE "DDIST1 :DIST1
IF :SIZE = "H [MAKE "DDIST :DIST/ 2
MAKE 'DDIST1 :DIST1 / 2]

IF :SIZE= "D [MAKE "DDIST :DIST• 2
MAKE "DDIST1 :DIST1 • 2]

cc
TYPE [MOVE THE TURTLE TO THE

POSITION TO START DRAWING.

USE F & S TO CHANGE THE DIST
THAT IT TRAVELS.]

SCAN.MOVE
cc
MAKE "POS POS
TYPE [PLEASE WAITI DRAWING]
START.DRAW
END

TO LINE
REPEAT :DIST [VARIABLE

COLORUNDER FD 1]
END

TO VARIABLE :COLOUR
MAKE "LINE (WORD :LINE :COLOUR)
END

How To Make the ASCD Symbols In the
Procedure SCAN.MOVE Using the CHAR
Reporter

There are a few methods of using Logo Writer to
program the computer to carry out instructions
when an arrow key is pressed. This is the
method that this child chooses to use in his
work. CHAR will report the single ASCII code
that represents a key, or a combination of keys,
from the keyboard. For example, if you want to
make the turtle respond when the arrow keys are
pressed you will need to insert these codes into
your procedure. Look at the procedure
SCAN.MOVE.

TO SCAN.MOVE
NAME READCHAR "CH
IF :CH = "H [SETH O FD :DIST2]
IF :CH = "M [SETH 90 FD :DIST2]
IF :CH ,;, "K [SETH -90 FD :DIST2]
IF :CH= "P [SETH 180 FD :DIST2]
IF :CH= "F [MAKE "DIST2 :DIST2 + 5)
IF :CH = "S [MAKE "DIST2 :DIST2 - 5)
IF :CH= CHAR 13 [STOP)
OUT?
SCAN.MOVE
END

How To Use the Computer To Show the
ASCil Symbol Which Represents the Key,
or Combination of Keys, Being Pressed.

I. In the command centre type: SHOW
READCHAR <enter>.

2. The computer pauses and waits for you to
press a key, or a combination of keys. For
example, press the up arrow.

3. You will see, in the command centre, a
single ASCII code which is represented by
" H" - This is a SPACE and the letter "H".

4. Place the cursor over the ASCII code.

5. Press "select button" (Fl).

6. Highlight the whole character.

7. Press "copy button" (F3).

8. Move the cursor to the required position in
the procedure.

9. Press "paste button" (F4).

NOTE:-The symbols" H"," M"," P" and
" K" are not actually letters but rather sym-
bols which represent the arrow keys of the
keyboard.

H represents i P represents ,l.
M represents K represents

Concluding Remarks
I believe in working in a Logo Environment,
armed with both the DRAWTOOL and the
SCANTOOL. However, careful decisions
must be made about when it is appropriate to
use these tools. You should analyse the
outcomes and expectations of the activity
your students are undertaking, then make a
decision. There are times when I specifically
ask the students not to use the tools.

I find Logo brilliant because of the tools that
are available for students to use. Most of
these are found on the master disk. Those
that are not, can be written by you, or prefer-
ably by your students.

Cover Graphic O\VL

The design on the cover of this issue of
LogoFile was developed from the Logo
procedure OWL, by Laura Dawes of
Bateman Primary School in Western Aus-
tralia. Laura's procedure was written for
a BBC microcomputer. All of the lengths
in the original procedure have been scaled
to change the size of the owl; the lengths
in the code given below produce an owl
that fits conveniently on the screen of a
Macintosh PowerBook.

TOOWL
HT
PU BK 50 PD LT 85
CIRCLE 10
ARC 5 10 WING 10
ARC 1510 WING 10
ARC 1010 CLAW 2
ARC 4 10 CLAW 2
RT170
LARC 2 10
LT85 BREAST
END

TOTAi :SIZE
REPEAT 3 [FD :SIZE RT 120]
END

TO FEATHERS :SIZE
LT 175
REPEAT 2 [ARC 18 :SIZE LT 180)
LT 10
REPEAT 4 [LARC 18 :SIZE RT 180)
RT10
REPEAT 2 [ARC 18 :SIZE LT 180]
RT175
END

TO ARC :STEPS :SIZE
REPEAT :STEPS [FD :SIZE RT 10)
END

TO LARC :STEPS :SIZE
REPEAT :STEPS [FD :SIZE LT 10)
END

TO BREAST
PU FD36 PD
FEATHERS 6/5
PU FD 12 PD
FEATHERS 1
PU FD 12 PD
FEATHERS 4/5
PU FD 16 PD
LT 30 TRI 12 RT 30
PUFD28LT90FD11 RT185PD
CIRCLE 1
PU LT 5 FD 22 RT 5 PD
CIRCLE 1
END

TO CIRCLE :SIZE
REPEAT 36 [FD :SIZE RT 10]
END

TO CLAW :SIZE
LT5
LARC 9 :SIZE
RT 190
ARC 18 :SIZE
RT170
LARC 9 :SIZE
LT85
FD6* :SIZE
BK6 • :SIZE
RT90
END

TOWING :SIZE
PETAL 9 :SIZE
FD :SIZE RT 10
PETAL 7 :SIZE
FD :SIZE RT 10
PETAL 5 :SIZE
END

TO PETAL :STEPS :SIZE
REPEAT 2 [ARC :STEPS :SIZE RT (180-

:STEPS • 10))
END

Thanks to Paul Dench for sending us this
one. Please send interesting graphics for
possible use as future cover designs to the
Editors at the address on page 3.

MicroWorlcls - That
Sounds Famil1a1

David Rasmussen
Victoria

Anyone who has been
"Mindstormed" will have
heard of microworlds, those
fuzzily defined microcosms of
exploration and investigation
that have been a part of the
Logo philosophy since the
turtle was a terrapin. Well,
now there is a new product
from LCSI, the developers of
LogoWriter, called
Micro Worlds. The name is
not a coincidence, I'm sure,
since one of its purposes is to
encourage the user to build
microworlds, or Projects as
they are called here. And, to
encourage a novice Logo user
(and, indeed, some old
hands), much of the hard
work of animation, music,
colour, etc. has been "built-
in", to enable users to get on
with their project building.
There are many other features
that teachers and students will
be familiar with, such as
buttons (as in HyperCard) and
drawing tools and palettes (as
in Kid Pix).

[n case you're about to tum
the page because you think
your standard of Logo may be
well above this, let me assure

you that all of the program-
ming primitives of
Logo Writer are there plus
many more, including many
that you would have wished
for in previous Logos.

There is one problem how-
ever. It is only available for
the Macintosh platform. The
PC version will be released
sometime in July 1994. It
will be a Windows version
and will be well worth wait-
ing for.

Micro Worlds has at its centre,
a package called
Micro Worlds Project Builder.
Accompanying this are two
support packages,
Micro Worlds Language Arts
and MicroWorlds Math which
can be purchased separately.
These, and other packages to
be developed by LCSI, are
similar in concept to the
support material that accom-
panied Logo Writer, if you
purchased the full kit. I'll
discuss those in future arti-
cles.

When MicroWorlds is loaded
you' U see the familiar
Logo Writer page. There is
the drawing and text screen
above and the command
centre below. But there the
similarities cease. A tool
palette is showing on the right
of the command centre. (It
can be made to hide or show

from the Gadgets menu bar as
in many other Mac drawing
programs). Click on the
Moon face icon and the
command centre is trans-
formed into a shape table, full
of editable costumes for the
turtle and some co tume tools
(see Fig. 1). If you don't like
a costume you can design
your own in a shape editor
that has 256 colours, as well
as rotation and flipping tools.

Other tools showing in the
palette are for painting, writ-
ing procedures, hatching a
new turtle (the number is only
limited by the memory size of
your Mac), text boxes, but-
tons, sliders and, in the top
left comer, the pointing tool.
Can you identify them all?
The tools for turtles, text
boxes, buttons and sliders are
known as Objects. Clicking
on the paint tool changes the
command centre menu to
show a selection of familiar
drawing tools and colours.
Click on the button tool and
you get a dialog box waiting
for your instructions for the
button to be typed in.

The last tool in the bottom
row of the tool palette is the
slider, a unique tool that
allows the user to control the
speed with which something
happens, by pushing a hori-
zontal slider to the right
(faster) or to the left (slower).

Figure 1: The Microworlds Tools Palette

(see Fig. 2). After clicking on
this tool and clicking on the
screen you can change the
default name of the slider and
set its speed range.

Next to the Tool palette (Fig.
I) in the shapes window arc
some tools for tunic house-
keeping. The turtle tool
allows you to change the
costume of any turtle already

N11me: lsllderl

Minimum:

M11Hlmum: EJ

Twinkle Little Star" play in
the background? Everything
stopped while one turtle
moved or one note played.
Well now it can all happen at
once without any stoppages,
depending on your memory
size. In the scene following
called Dance, all of the people
can dance at once or individu-
ally, simply by clicking on a
dancer. Meanwhile the music

I
Show N11me

(C11ncel) (OK ,

Logo Writer on the Mac) via a
microphone can be entered
and saved and "original"
keyboard music can be com-
posed (using a synthesiser of
sorts) and saved for incorpo-
ration into your project.

There is more, of course, but
it would be better for you to
discover all of the great things
you and your students can do

-
II

[..,j Ito' :~ IA) C8)

Figure 2: A Micro Worlds Dialog Box - sliders
The Slider tool has been chosen, a point on the screen where the slider will go is

clicked and a dialog box appears

showing, The scissors "cut''
out any object you want
removed and the rubber stamp
does what you'd expect. The
most exciting tools here are
the magnifying glasses which
can magnify a shape (or
shrink it), something I believe
every Logo Writer user bas
wi bed for.

One of the big advantages, in
my mind, ofMicroWorlds
over other Logos, is the
concept of parallel process-
ing. In simple terms, this
means the ability to have
more than one action happen-
ing in real time. Remember
how you have tJ:ied to make
three turtles move independ-
ently while having "Twinkle

plays endlessly when the
"dance" button is clicked.

The slider bar called "speed"
controls the male dancer
second from the top on the
right. Moving the slider right
or left controls the size of the
step be takes - all while the
other people are dancing. All
of the shapes were created in
the shape table and this whole
project was completed by a
novice Micro Worlds user in
about 2 hours.

The music fans have been
well and truly catered for in
Micro Worlds. There is a
separate section under the
Gadgets menu where both
recorded sound (similar to

(such as making balloon text
boxes). In my experience
with both teachers and stu-
dents, the excitement gener-
ated is a refreshing change
from the frustrations experi-
enced with other software
when new users suddenly find
themselves confronted with
the familiar hill of learning
before even a simple task can
be performed. In keeping
with LCSl's tradition, it's
simple, even for Logo nov-
ices, to get some action hap-
pening, and fun too.

I wish I could say that
Micro Worlds is a perfect
educational tool. I can't.
There are some frustrating
features. Logo purists may

Figure 3: A sample Micro Worlds picture

gasp in horror at the auto•
matic features that may ap-
pear to ta!ce the "thinking" out
of Logo. The picture can
become cluttered with but-
tons, sliders and text boxes (it
would be nice to be able to
make these invisible when not
needed). And, most frustrat•
ing of all, for me, is the
difficult process one has to go
through to combine projects.
I recently gave a group of
~chers a project idea to
work on individually, with the
idea of joining all of their
pages into one "book". Un-
fortunately you can only
make pages within a project,
and connecting projects
together is very messy and
tedious and not for the faint-
hearted.

These grumbles aside,
MicroWorlds i an exciting
and colourful package, almost
guaranteed to motivate even
the most reluctant student. It
provides all the necessary
Logo programming tools as
well as hypermedia capabili·
ties. It should be included on
any school's future software
list. Buy it and enjoy it!

Teaching LogoWritcr
Progr.in1rning

Jenny C.1II.itian
Cleel.-incl

Secondary College
Victoria

As with any subject in the
school curriculum, there are
many different approaches
that can be used in teaching
computer programming. In
analysing the characteristics
of each of these approaches
the following questions need
to be con idered:

• Who is in control of the
activity, the teacher or the
student?

• Who initiates the activities,
teacher or student?

• Is the work goal oriented or
exploratory?

• Is the teacher's guidance
prescriptive or sought when
needed?

• Is the programming being

taught from the top down or
the bottom up?

In two papers, Teaching
Computer Programming
(1981) and Approaches 10

Teaching Logo Programming
(1985), McDougall describes
a total of five approaches to
teaching programming:

t. Syntax Approach

The teacher presents state-
ment types, a few at a time
with those most easily under-
stood or most commonly used
presented first. Students are
set programming exercises
using these statements, a few
at a time, to write programs or
program segments.

In this approach the teacher is
the controller and initiator of
the activity in the classroom.
The work could be generally
described as goal oriented as
students are presented with
set exercises or projects to
complete. This is an example
of a bottom up approach to
teaching comp1:1ter program·
ming.

2. Whole Program Ap- however as prescriptive as the is taught from the bottom up.
proach syntax approach described

earlier. ln this approach, once Teaching involves a constant
Students are presented with a the initial commands have search for the "best", most
complete pre-written pro- been taught learners begin to effective way to create envi-
gram. The program is run, talce control of their own ronments in which learners
output displayed, and a dis- outcomes. develop knowledge and skills.
cussion of the program fol- In my experience, the an wers
lows. The various parts of the 4. Turtle Humming to the following questions
program are related to the play a major role in determin-
outcome. Students can then Learners use a small "phrase" ing what will be the most
be set to explore similar and repeat and change it. The effective method of teaching
programs using the same phrase is programmed by the any particulanopic:
commands. learner using very simple • Why am I teaching this

commands. This is an ap- topic?
In this approach the teacher proach where the learner has • Who am I teaching?
initiates the activity in the control of the situation but the • What are the desired out-
classroom, but due to the activity is initiated by the comes of my teaching?
more varied projects under- teacher. The work can be • What facilities are available
talcen after the initial teaching classified as exploratory but is to aid in teaching this subject?
period, control is given over limited to exploring with the
to the learners. The work is phrase. This approach is a Why Teach Computer
more exploratory in nature. further example of bottom up Prognmmlng?
This is an example of pro- programming as learners
gramming being taught from begin with very simple com- In his book Mindstorms,
the top down, with the teach- mands. Seymour Papert states ;
er's guidance being sought
when necessary. 5. Logo on the Run In my vision, the child pro-

grams the compuler and in
3. Doodle, Design, Debug The teacher follows the doing so, both acquires a

learner's inclinations. What- sense of mastery over a piece
The process is exactly as ever the learner wants the of most modem and powerful
described. The learner doo- turtle to do, the teacher writes technology and establishes
dies in Logo u ing basic a program for that movement. contact with some of the
commands, then begins to This approach avoids students deepest ideas from science,
plan outcomes - design. The having to learn Logo syntax from matherMtics and from
procedure or program is then initially, however it could the art of intellectual model
modified or built on in the take a large amount of the building. (Papert, 1980, p. 5)
debug stage. Using this teacher's time especially in
approach, the learner is in initial stages. While learners ln the years since
control of, and initiates the arc in control of what they do Mind.storms was first pub-
activity. The work is explora- on the computer, and initiate lished there has been a wealth
tory and the teacher's guid- their own work, they are very of literature and research to
ance can be sought when dependent on the teacher (at show that children learn best
necessary. This differs from least initially) to write the when they are interested,
the whole program approach programs for them. The work involved and in control of the
in that it is being taught from in this case is exploratory and learning process. Computer
the bottom up. Learners only the teacher's guidance sought programming is a powerful
encounter procedures as they when required. This is an medium which teachers can
see a need for them. It is not approach where programming utilise to place learners in

control of the learning proc-
ess. As uch, it is a valuable
subject in itself, and a valu-
able aid to learning across a
variety of subjects.

In deciding how to teach
programming, the teacher
should keep in mind that
much of the value of learning
programming is gained by
placing the student in control
of that learning.

To Whom Am I Teaching
Programming?

As a secondary teacher I need
to consider carefuUy the
experience and abilities of all
the students in my class. As a
rule the group wiU have a
diverse range of computer
experience. Some may al-
ready have learned program-
ming in primary school or
elective programs in second-
ary school. Some may have
had very negative experi-
ences, as the Year 12 tudent
who walked past one day,
looked at the computer screen
in front of me and said, "Oh,
that's that Logo stuff. I never
understood thaL" Others may
be extremely skil.led and have
no need to be taught anything.
As the majority of the re-
search on Logo seems to have
been carried out in primary
classes, these conditions
facing the secondary teacher
have not been researched or
discussed in any great depth.
They are not however atypical
of a secondary class in any
subject. In all subjects we
encounter students with a
wide range of prior experi-

ences and knowledge, and we
have developed kills to teach
each of these students.

a non-computer class in a
computer room and organise a
weelcly room swap. While

What Are the Desired Out-
comes of Teaching Pro-
gramming?

The desired outcome is an
improvement in the student's
learning and motivation.
Whether programming is
being taught purely as part of
a computer studies course, or
it is being taught so that
students can use it for Maths,
English, Science, etc., it can
be a valuable tool in enhanc-
ing both learning and motiva-
tion.

What Fadlitles Are A vaJl-
able for Teaching Program-
ming?

this is not impossible, it is a
far cry from an ideal situation.

If it were found that my clas
could not achieve a regular
time in a computer room, this
might affect the teaching
approach chosen. If I were
confined to a room with a
blackboard, yet wanted to
teach programming, perhaps a
lesson on syntax would be
better than no lesson at all.
This could then be followed
up by a lesson in a computer
room at a later time.

Which Method of Teaching
Programming Would Con-
tribute to the Most Effective
Learning Jn Students?

As with all teaching and
learning environments, there
is no "best" method that
worts all tbe time. As a
teacher I finnly believe how-
ever that when the learner is
in control of the learning
environment and determining
the outcomes, experience
shows that he or she wilJ learn
far better than when the
environment is externally
controlled. If we are after
understanding, if we wish
students to be motivated to

Most secondary schools
would have at least one
computer room with at least
enough computers for two lo
a computer. At Cleeland
Secondary College (where I
work as a Maths and PE
teacher) we have two fully
equipped rooms with IBM
compatible computers. There
are sufficient computers in
each room for a computer
between two students. These
all have Logo Writer on them.
We also have six Macintosh
computers in a literacy centre,
however these do not have
LogoWriter. The logistics
involved in organising the use
of either of the computer
rooms for any ongoing pro-
gramme are quite prohibitive.

learn, we must choose the
teaching methodology that

I would have to match when
my class is timetabled against

best achieves this.

In her book Children Design-
ers, Harel (J 99 J) describes
three Logo learning environ-
ments which she created as
part of a research project:

I. Isolated Logo

Students learnt Logo in the
school computer lab. They
were taught by the computer-
room coordinator, and did
short programming exercises
and as ignments on which
they were then graded.

2. Integrated Logo

Students worked in an open
area near the classroom.
Work was project oriented,
with programs being inte-
grated into a specific curricu-
lum. Work was graded in a
highly subjective manner
taking into account the stu-
dents' input, and the final
projects.

3. Software Design Logo

This was an extension of the
Integrated learning environ-
ment. The students worked on
one project over the term of
the study: to<'.write a program
to teach younger students
fractions. They were design-
ing a real product for real
people.

The environments set up by
Harel show examples of the
syntax approach - Isolated
Logo, and the whole program
approach - Integrated Logo
and Software Design Logo.

While the research described
in Children Designers was
not set up solely to compare
outcomes from different
approaches to teaching Logo,
the results showed clear
differences in learning out-
comes. The students involved

in writing real programs
performed better in post-tests
than the other two groups,
while those in the Integrated
Logo environment had
learned more in all areas than
those in the Isolated Logo
group.

The results of Harel's re-
search suggest that children
learned best when they were
involved in a rich, meaning-
ful, and complex task, work-
ing towards designing and
programming a real product
for real people.

Which approach achieves the
most effective outcomes? In
my discussions I have con-
centrated mainly on the whole
program approach and the
syntax approach, as I feel that
the other three approaches are
more appropriate for primary
school students.

It is always tempting to take
the approach that keeps the
teacher in control of the
learning environment. The
uncertainty of twenty-five
students undertaking twenty-
five different projects can be
daunting to the best of teach-
ers at the best of times. How-
ever, the approach in which
learners have control of their
learning, in which learners are
being taught to read and
understand whole program
before writing their own, and
in which learners are deter-
mining their own goals would
seem to be the approach that
will produce the most effec-
tive learning. As a teacher,
keeping in mind constraints
already mentioned, I would

ideally seek to create an
environment where the stu-
dents were learning program-
ming by the whole program
approach and working on
projects that were meaningful
to them.

References

Hare!, I. (1991) Children
Designers Ablex Publishing
Corporation.

McDougall, A. (1981)
Teaching Computer Program-
ming. In Rogerson, A. (ed.)
Mathematics: Myths and
Realities Mathematical
Association of Victoria, 370-
3.

McDougall, A. (1985) Ap-
proaches to Teaching Logo
Programming. In Duncan, K.
and Harris, D. (eds.) Com-
puters in Education North-
Holland 623-7.

Papert, S. (1980)
Mlndstorms: Children,
Computers and Powerful
Ideas Harvester.

. J

BOOK REVIEW Debora Goldman Mount Scopus [Jlemonal College Victoria
Interactive Problem Solving Using Logo by Heinz-Dieter Boeker, Hal Eden, Gerhard Fischer, published 1991 by Lawrence Erlbaum Associates ISBN 0-8058-0305-X (cloth) 0-8058-0306-8 (paper) Some weeks ago, while waiting for my children at the library, I browsed through the latest books received. There, amongst the fiction and chil­dren's references, shone a gem: Interactlve Problem Solving Using Logo. Just by skim­ming the book I could see how valuable this could be, for teachers, educators and even students not very familiar with advanced Logo . The book is divided into seven parts. The first part talces the reader through fundamentals in Logo programming: procedures, debugging, variables both local and global, and list process­ing. Each chapter contains clear illustrations of concepts as pictures, flow charts, or "maps". There are sample programs with outputs along the way and at the end of each chapter there are exercises. In fact, although the topic areas change, the format is the same throughout: clear illustrations to explain a point being made, sample proce­dures, and exercises. Part Two looks at mathematical topics such as prime numbers, greatest common divisor, change of base, recursion, and problem solving. Part Three is for the computer scientist examin­ing sorting, pattern matching, simulations, formal languages, and so on. Part Four looks at Artificial InteUigence, Part Five at Linguistics,

Six at games, and Seven at new develop­ments in computers and education such as object-oriented programming, and extensions to programming in Logo. The five appendices contain primitives used in the book (with explanations), utility proce­dures, and additional resources for extra reference. As a resource this book is excellent. I have yet to explore its capabilities as a teaching tool. My estimation is that it is easy to read either as a whole or jumping from section to section. It is definitely a hook well worth reading, if not owning.
Secret Messages Peter J Carter Lockleys, South Australia

One of the easiest ways of enciphering
messages is to substitute one letter for
another, perhaps m for a. The idea has
been used for centuries, often with a pair
of discs with the letters around their
peripheries. These procedures do the
same thing with a pair of lists. Rotate the
lists before you start, eg. ROTATE 14

TO ENCIPHER :MESSAGE
IF EMPTY? :MESSAGE [OP Ul
OP SE ENCIPHERWORD FIRST

:MESSAGE ENCIPHER BF
:MESSAGE

END

TO ENCIPHERWORD :WORD
IF EMPTY? :WOAD [OP"]
OP WORD SWAP FIRST :WORD

:ALPH :SUBST ENCIPHERWORD
BF :WORD

END.

TO DECIPHER :MESSAGE
IF EMPTY? :MESSAGE [OP O]
OP SE DECIPHERWORD FIRST
:MESSAGE DECIPHER BF
:MESSAGE

END

TO DECIPHERWORD :WORD
IF EMPTY? :WORD [OP "]
OP WORD SWAP FIRST :WORD
:SUBST :ALPH DECIPHERWORD
BF:WORD

END

TO SWAP :LETTER :ALPH :SUBST
IF EMPTY? :ALPH [OP :LETTER]
IF :LETTER= FIRST :ALPH [OP FIRST
:SUBST]

OP SWAP :LETTER BF :ALPH BF
:SUBST

END

TO STARTUP
MAKE "ALPH [A B C D E F G H I J K L
MNOPQRSTUVWXYZJ

MAKE "SUBST [A BCD E F G H I J KL
MNOPQRSTUVWXYZ]

END

TO ROTATE :NUMBER
MAKE "SUBST ROTATEAUX :SUBST

:NUMBER
END

TO ROTATEAUX :LETTERS :NUMBER
IF O = :NUMBER [OP :LETTERS]
OP ROTATEAUX SE BF :LETTERS

FIRST :LETTERS :NUMBER - 1
END

Graphic
produced with
DOODLE
procedures.

DOODLE.
A Macintosh Logownter for Todcllcrs

hl1chellc
V1ctona

DOODLE is an adaptation for Macintosh
Logo Writer of a program called TODDLER,
a single-key Logo for the Apple II computer
(from the book Leaming Logo on the Ap-
ple II by A. McDougall, T. Adams and P.
Adams - Prentice Hall, 1982)

To start the program running, type
STARTDOODLE 1 O (or some other number
- the number sets the distance to be moved
by the turtle on each command). Then
single keystrokes can be used to move the
turtle, change its colour, and control the
screen. F, B, Land R move and tum the
turtle. S, T and C make a square, a triangle
and a circle respectively. Q, P and W clear
graphics and control the pen and wrapping.
Y is a fill command. The numbers O - 9 set
different colours for the turtle. X stops the
program.

TO STARTDOODLE :SPEED
CG SETBG O SETC 1
MAKE "ADDO
MAKE "REM 0
MAKE "REMPEN 0
DOODLE :SPEED
END

TO GETCOMMAND :FAST
MAKE "COM READCHAR
IF :COM= "F [FD :FAST]
IF :COM = "B [BK :FASTI
IF :COM = "A [RT 30 MAKE "ADD :ADD+
30)

IF :COM= "L [LT 30 MAKE "ADD :ADD+
30)

IF :COM = "S [SQUARE :FAST+ 20)
IF :COM = ''T [TRI :FAST+ 20)
IF :COM= "C [CIRCLE :FAST]
IF :COM = "Q [CG)
IF :COM = "P [PENS)
IF :COM = "W [WRAPS]
IF :COM = "Y [FILL]

IF :COM= "X [STOPALL)
IF :COM = 0 [SETC OJ
IF :COM= 1 [SETC 1]
IF :COM = 2 [SETC 2)
IF :COM = 3 [SETC 3]
IF :COM = 4 [SETC 4]
IF :COM = 5 [SETC 5]
IF :COM = 6 [SETC 6]
IF :COM = 7 [SETC 7]
IF :COM = 8 [SETC 8]
IF :COM == 9 [SETC 9)
END

TO PENS
MAKE "REMPEN

:REMPEN+ 1

Animals ancJ Elements:
The Use of Binary

Decision Progr.ims 1n
Te.ich1ng

N1cl1olas Derry
C.trey Grammar School

Victori;1

Introduction

The ability of Logowriter to
deal with lists enables it to be
used to work through com-
plex binary structures. Thi
article examines how this
ability can be used as a teach-
ing aid. A number of pro-
grams will be presented and
comment made about their
po sible use in the classroom.

ANIMAL (Abelson, 1982)

Originally written in Logo,
this program was adapted by
the author to run in
LogoWriter. The programs
developed later draw consid-
erably on the ideas in the
ANIMAL program.

IFELSE :REMPEN =1 [PU]
[PD MAKE "REM PEN OJ

END

TO WRAPS
MAKE "REM :REM +1
IFELSE :REM = 1
[WINDOW][WRAP MAKE
"REMO]

END

TO CIRCLE :SIDE
REPEAT 20 [FD :SIDE RT

18]
END

The hierachical structure of
this program employs a series
of yes/no questions to decide
which part of the program to
use next, and hence ultimately
to identify an animal the
operator of the program has
selected. Thi idea may be
iJlustrated by the diagram
below.

Docs ii live in water?

Bird Cat

To run the ANIMAL program
the 'knowledge' list has first
to be supplied with an animal.

MAKE "KNOWLEDGE
"DOG

ANIMAL

TO SQUARE :LENGTH
REPEAT 4 [FD :LENGTH

RT90]
END

TO TRI :LENGTH
REPEAT 3 [FD :LENGTH

RT 120)
END

TO DOODLE :SPEED
IF KEY? [GETCOMMAND

:SPEED]
DOODLE :SPEED
END

The feature of this program is
it capacity to learn. Imagine
that the program has been
tarted up with 'fish' as the

only animal it knows. The
program asks the user if the
animal they were thinking of
is a fish. [f the answer is 'no',
the program asks for a ques-
tion that distinguishes a fish
from the user's animal. In
effect, the program is expand-
ing the tree structure as shown
in the example above.

ELEMENT

This is a simple adaptation of
the ANIMAL program, in-
volving the identification of
an element rather than an
animal. II runs in exactly the
same way as ANIMAL, the
only changes being the word-
ing that comes up on the
screen, and the change of one
uh-procedure name to match

the input.

Code for the ELEMENT
program follows. To run it
the 'knowledge' list has first
to be upplied with an ele-

ment, then type ELEMENT. For example:

MAKE 'KNOWLEDGE "OXYGEN
ELEMENT

The power of this program lies in its potential
as a probe of student understanding. Students
could be given a list of elements, for example,
and asked to devise questions that would
distinguish between pairs of them by means
of yes/no questions. This would allow for a
detailed analysis of understanding, particu-
larly if the elements chosen were similar in
their properties.

Of course, the potential of this program does
not just lie in science. It has the potential to
probe student understanding in any area
where objects/concepts/facts may be distin-
guished by yes/no questions.

A current problem with this program in
Logo Writer is that the author was unable to
find a means of saving tb.e workspace, which
is where the aquired knowledge of ELE-
MENT is stored. This means that the ques-
tions devised by the students would have
either to be written down for the teacher to
see, or teachers would have to run the pro-
gram once the students had 'taught' it to
distinguish between the selected elements.

[We have refe"ed this one to Dr. Turtle; see
elsewhere in this issue. Ed.s.J

TO ELEMENT
PR [THINK OF AN ELEMENT.]
PR [I SHALL TRY TO GUESS IT BY
ASKING QUESTIONS.)

CHOOSE.BRANCH :KNOWLEDGE
PR [LErs TRY AGAIN ...)
END

TO QUESTION :NODE
OP FIRST :NODE
END

TO YES.BRANCH :NODE
OP FIRST (BF :NODE)
END

TO NO.BRANCH :NODE
OP LAST :NODE
END

TO CHOOSE.BRANCH :NODE
IF (WORD? :NODE) [GUESS :NODE

STOP)
MAKE "RESPONSE ASK.YES.OR.NO

(QUESTION :NODE)
IF :RESPONSE = [YES]
[CHOOSE.BRANCH (YES.BRANCH
:NODE) STOP]

CHOOSE.BRANCH (NO.BRANCH :NODE)
END

TO ASK.YES.OR.NO :QUESTION
PR :QUESTION
MAKE "INPUT AL
IF :INPUT= [YES] [OP [YES)]
IF :INPUT= [NO] [OP [NO]]
PR [PLEASE TYPE "YES" OR "N01
OP ASK.YES.OR.NO :QUESTION
END

TO ADD.A.OR.AN :WORD
IF (FIRST :WORD)= [A E I OU) [OP SE

"AN :WORD]
OP SE "A :WORD
END

TO GUESS :ELEMENT
MAKE "FINAL.QUESTION (SE [IS IT)

(ADD.A.OR.AN :ELEMENT) [?])
MAKE "RESPONSE ASK.YES.OR.NO

:FINAL.QUESTION
IF :RESPONSE = [YES] [PR [LOOK HOW

SMART I AMI] STOP]
GET.SMARTER :ELEMENT
END

TO GET.SMARTER :WRONG.ANSWER
PR [OH WELL, I WAS WRONG. WHAT

WAS IT?]
MAKE "RIGHT.ANSWER (LAST AL)
PR [PLEASE TYPE IN A QUESTION

WHOSE ANSWER)
PR (SE [IS YES FOR] (ADD.A.OR.AN

:RIGHT.ANSWER) [AND])
PR (SE [NO FOR) (ADD.A.OR.AN

:WRONG.ANSWER))

MAKE "QUESTION AL
EXTEND.KNOWLEDGE :QUESTION
:RIGHT.ANSWER :WRONG.ANSWER

END

TO EXTEND.KNOWLEDGE
:NEW.QUESTION :YES.ANSWER
:NO.ANSWER

MAKE "KNOWLEDGE REPACE
:KNOWLEDGE :NO.ANSWER (LIST
:NEW.QUESTION :YES.ANSWER
:NO.ANSWER)

END

TO REPACE :TREE :NODE
:REPLACEMENT

IF :TREE = :NODE [OP
:REPLACEMENT]

IF WORD? :TREE [OP :TREE]
OP (LIST QUESTION :TREE REPACE

(YES.BRANCH :TREE) :NODE
:REPLACEMENT REPACE
(NO.BRANCH :TREE) :NODE
:REPLACEMENT)

END

Were it possible to save the workspace, it
would be relatively simple to adapt this pro-
gram into a guessing game that could be
programmed by the teacher for use by stu-
dents, by changing the wording of the print
commands already in the program. For exam-
ple, in the ELEMENT procedure PR [THINK
OF AN ELEMENT] would be changed to PR
[I WILL THINK OF AN ELEMENT].

ANALYSE

Although much simpler than ELEMENT, this
program uses the same basic structure, a series
of questions to which the answer can only be
yes or no. The answer selected determines the
direction the program takes. The program is
given in the following code.

TO ANALYSE
CT
PR [WE ARE GOING TO TRY AND

IDENTIFY THE CHEMICAL YOU HAVE

BEEN TESTING]
PR(]
PR [HAVE YOU GOT YOUR RESULTS?]
PR[]
PR [PLEASE TYPE 'Y' FOR YES OR 'N'
FORNO.]

PR[]
MAKE "INPUT ANSWER.YES.OR.NO
IF :INPUT= [YES] [PR [GOOD]]
IF :INPUT= [NO] [OP DUNCE]
QUESTION1
END

TO ANSWER.YES.OR.NO
IF READCHAR = •y [OP [YES]]
OP [NO]
PR [PLEASE TYPE Y OR NJ
OP ANSWER.YES.OR.NO
END

TO QUESTION1
PR [PLEASE TYPE 'Y' FOR YES OR 'N'

FOR NO TO THE FOLLOWING
QUESTIONS]

PR[]
PR [IS A WHITE PRECIPITATE

FORMED?]
IF READCHAR = "Y [OP QUESTION2]
OP QUESTION3
END

TO QUESTION2
PR[]
PR [IS THE PRECIPITATE SOLUBLE IN

EXCESS AQUEOUS AMMONIA
SOLUTION?]

IF READCHAR = "Y [PR [YOUR
CHEMICAL IS: ZINC] OP AGAIN]

OP QUESTION4
END

TO OUESTION3
PR[]
PR [IS A BLUE PRECIPITATE

FORMED?]
IF READCHAR = "Y [PR [YOUR

CHEMICAL IS: COPPER(ll)] OP
AGAIN]

OP QUESTIONS
END

TO QUESTION4
PR[]
PR [IS THE PRECIPITATE SOLUBLE IN

EXCESS NAOH SOLUTION?]
IF READCHAR = "Y [OP QUESTION?)
OP QUESTION6
END

TO QUESTIONS
PR[]
PR [IS A RED/BROWN PRECIPITATE

FORMED?] •
IF READCHAR = "Y [PR [YOUR
CHEMICAL IS: IRON(llI)] OP AGAIN)

PR [YOUR CHEMICAL IS: IRON(II))
OP AGAIN
END

TO QUESTION6
PR[)
PR [DOES A SOLUTION OF THIS ION

GIVE A BRICK RED FLAME
COLOUR?]

IF READCHAR = "Y [PR [YOUR
CHEMICAL IS: CALCIUM) OP AGAIN)

PR [YOUR CHEMICAL IS:
MAGNESIUM]

OP AGAIN
END

TO QUESTION?
PR[)
PR [IS A WHITE PRECIPITATE

FORMED WHEN SODIUM SULFATE
SOLUTION IS ADDED?]

IF READCHAR = "Y [PR [YOUR
CHEMICAL IS: LEAD(II)) OP AGAIN]

PR [YOUR CHEMICAL IS: ALUMINIUM]
OP AGAIN
END

TO DUNCE
PR [WELL GO AND GET THEM!

PRESS <ANY KEY> WHEN YOU ARE
READY TO CONTINUE)

IF READCHAR = "RETURN
OP QUESTION1
END

TO AGAIN
PR[)
PR [DO YOU WANT TO IDENTIFY
ANOTHER CHEMICAL?]

PR [TYPE Y TO CONTINUE, N TO STOP)
PR[)
IF READCHAR = "Y [OP QUESTION1)
PR [OKI SEE YOU NEXT TIME]
END

To run the program, type ANALYSE in the
command centre. The program has an auto-
matic screenclear, so care must be taken not to
try to run it while on the flipside.

This program aims to provide a data base that
students can use in the laboratory as they are
performing experiments. Qualitative analysis
of this type is used primarily for teaching
practical technique. Since it is not the aim to
teach a knowledge base of chemicals, it is
therefore acceptable for students to use a
program such as this. If they are not perform-
ing the tests accurately this database will be of
no use to them anyway.

The basis of the program is clearly expandable
to encompass more chemicals, or adaptable to
other science topics or indeed other subjects.
Plant and animal classification could easily be
translated into a program such as this.

Disadvantages of the current program are that
its error catching mechanisms are very basic,
and the program will not respond in any way to
keys other than those specified. Given its
potential for use in a classroom where students
delight in testing out what different keys will
do to a program's operation this is clearly a
disadvantage.

Reference

Abelson, H. (1982) Apple Logo. Byte/
McGraw-Hill.

How to Run ii Sports D;iy .
I

Pete, J C;irtcr
Locklcys

South Australia

I once gave a Year 12 class the task of devel-
oping a spreadsheet to calculate the results
for a Sports Day. They needed some data to
test their work, so I wrote a few LogoWriter
procedures to generate a set of 'results' for
each student:

Procedures for Sports Day spreadsheet
assignment

TO SPORTSDAY
CT PR "IRESUL TS FOR SPORTS DA YI
PR" PR "IU16 BOYS 400 Ml
UAGE 1 :HOUSES
PR " PR TIME :8400
PR" PR "IU16 GIRLS 400 Ml
UAGE 1 :HOUSES
PR " PR TIME :G400
PR" PR "IU16 BOYS SHOT PUTI
UAGE 1 :HOUSES
PR " PR TIME :BSHOT
PR" PR "IU16 GIRLS SHOT PUTI
UAGE 1 :HOUSES
PR " PR TIME :GSHOT
PR ' PR "IOPEN BOYS 100 Ml
OPEN 1
PR" PR TIME :B100
PR' PR "IOPEN GIRLS 100 Ml
OPEN 1
PR" PR TIME :G100
PR' PR 'IOPEN BOYS HIGH JUMPI
OPEN 1
PR • PR TIME :BJUMP
PR ' PR "IOPEN GIRLS HIGH JUMPI
OPEN 1
PR ' PR TIME :GJUMP
END

TO UAGE :PLACE :HOUSES
IF EMPTY? :HOUSES [STOP)
MAKE 'POS 1 + RANDOM COUNT

:HOUSES
PR (SE :PLACE ITEM :POS :HOUSES
CHAR 32) CB CB

UAGE :PLACE + 1 REMOVE :POS
:HOUSES

END

TO REMOVE :PLACE :LIST
IF EMPTY? :LIST [OP ']
IF 1 = :PLACE [OP BF :LISTI
OP SE FIRST :LIST

REMOVE :PLACE - 1 BF :LIST
END

TO OPEN :PLACE
IF :PLACE> 4 [STOP)
PR (SE :PLACE ITEM 1 + RANDOM 4

:HOUSES CHAR 32) CB CB
OPEN :PLACE + 1
END

TO TIME :LIST
OP ITEM 1 + RANDOM 5 :LIST
END

TO STARTUP
MAKE "HOUSES [BOOLE LOVELACE

TURING ZUSE]
MAKE "8400 [1:121:10 1:081:071:06]
MAKE "G400 (1: 13 1 :11 1 :09 1 :07 1 :05)
MAKE "BSHOT[11.211.511.812.1

12.3)
MAKE "GSHOT (7 .8 8.1 8.2 8.3 8.4)
MAKE "8100(11.811.711.611.5 11.4)
MAKE "G100 [14.2 14.0 13.713.5 13.2)
MAKE "BJUMP [1.71.72 1.741.761.78)
MAKE "GJUMP [1.5 1.52 1.54 1.56 1.58)
END

Graphic produced with DOODLE procedures • see page 21.

De;ir Dr Turtle

This section Is for your Logo problems.
Post your problems and Dr Turtle and a
panel of "experts" will attempt to answer
them.

Dear Dr. Turtle,
Nicholas Derry, in his article about the
ELEMENT program in the c14rrent iswe,
notes a problem as follows: "A Cllrrent
problem with this program in Logo Writer is
that tire author was llnable to fmd a means of
saving the workspace, which is where the
acqllired knowledge of ELEMENT is stored.
This means that the questions devised by the
students would have either to be wrirten
down/or the teacher to see, or the teacher
wo14ltf have to run the program once the
students had taught it to distinguish between
the selected elements." This looks like one
for you - what would you suggest? Eds.

Well, at last, a genuine letter asking for some
advice.

To capture some text and to be able to use it
later can be done in a number of ways. One
way is to create a set of tools for this purpose
and then import them into your page with
GETTOOLS "Pagename.

This way they are loaded "invisibly", on the
Flip side and will be consistent. If you load
more files than you need, they won't be seen
anyway. (To see your invisible files, type
SHOW TOOLLIST).

Here are a couple of tools to get you started.
You might want to adjust them slightly to
suit your particular needs

TO GET.WORDS :LIST
CT HT TAB
PR [TYPE A WORD ... or S to STOP]
MAKE "LIST SE :LIST READWORD
IFELSE EQUAL? LAST :LIST "S

[NAME.LIST :LISTI [GET.WORDS
:LISTI

END

TOREADWORD
OP FIRST READLIST
END

TO NAME.LIST :LIST
CT
PR 0
PR [HERE IS YOUR LIST]
PR 0
PR BUTLAST :LIST
PR 0
PR [WHAT WOULD YOU LIKE TO CALL
YOUR LIST?]

PR 0
NAME BL :LIST READWORD
END

To collect a string of words such as a sentence
or an equation, you could use:

TO GET.SENTENCE :LIST
CTHT
PR [TYPE IN YOUR SENTENCE AND

PRESS ENTER WHEN DONE]
MAKE "LIST READLIST
PR 0
PR [WHAT DO YOU WANT TO CALL

YOUR SENTENCE?]
PR 0
PR 0
NAME :LIST READWORD
END

To use these tools, type GET.WORDS [] or
GET.SENTENCE [] The empty brackets are
necessary as input to allow the procedure to run.
To use it in a procedure:

TO COLLECT.WORDS
CTHT
GET.WORDS []
END

If you want to use your list somewhere else,
you'll need to remember it or have the student
remember it. If you want to name the list
without asking the user for a name you could
simply name it (say) X1 and store that name
somewhere for later use.

Dr Turtle.

OzLogo

LogoFile
Magazine of OzLogo, a Logo Special Interest Group of the CEGV and MA V.

Inside ...

Review of "The Children's Machine"
Procedures for Drawing Glassware for Science
Teaching Computer Programming
Investigating Language with Logo
Drawing Flags
SPIDER QUIZ
Towns of France
Dear Dr Turtle

Vol. 2, Nos. 3 & 4

The Creative Tool Kit Every Student Needs

Micro Worlds
Designed by the people who \'

1 0 j " {l /,,'9)
ILCSr brought you LogoWriter (~4• 11f!'

Cross-Curricula: ~' -:
MicroWorlds Project Builder ~· .
• A learning environment that Both

encourages students to develop packages ; , , --=-~ / •
their own problem-solving
strategies while creating school include .-L...
projects. • Tools to write text _ {::r. - J..'=-'___,_-...,._,, ,:

• A Project book that takes you in any shape, style, ...;..,::,... .
through the entire process of colour or size, or In
creating cross-curricula projects, any direction.
step by step. Drawing and other visual

• Drawing tool (and 140 colours) effects' tools such as anima-
tor creating backgrounds for lion, scrolling or flashing text.
stories. • A music and sound centre that

• Infinite number of turtles that can makes it easy to set words to
be set to different sizes and music.
shapes, and colours. • On-disk project starters, ready·

• Word-processing features such made background scenes, and
as multiple text boxes, different project samples.
fonts, sizes, stytes, and colours, , A new and comprehensive on-
plus the ability to place text over line Help System.Teachers or
graphics, or In any direction. students can even create their

• Easy to add buttons, sliders and own project-specific information
hot spots that help start and stop balloons.
animation, music and other
special effects, as well as create Package Contents:
hypermedia I inks.

Micro Writer's
Language Arts
• A Projects book full of writing

projects that illustrate how
language and art can be used
together to communicate ideas
and emotions. Projects Include
Haiku Visual Poel!y, Advertising,
Conqualn, and more.

By Phone
Call Toll Free 008 337 055 or
(03) 786 7177 in the
Melbourne Metro area

• Program disks includes on-disk
sample projects

• MicroWorlds Project Book
• Teacher's Resource
• HowToBook
School's Pricing
Se/$130
6 User Lab Pack $585
Unlimited Site Licence $1595

System Requirements:
Macintosh colour computers (LC's
colour Classics or better) 4Mb,
Systam 7 or higher Hard Drive
Available from:

ficomP.v.tHlyf
38 Hartnett Drive Seaford, Vic 3198

Ph: (03) 786 7177 Fax: (03) 785 3599

ORDERS
By Mail
Simply complete your order
details and mall with your
Purchase Order, credit card
details or cheque to:
Reply Paid AAA 146,
P O Box 2053 carrum Downs
Vic 3201

1.ogoFile i• a maguine for
1nl!IRSled Ulllld or Loi() in
oducalion publllhod by OiLoso.
OlLogo is a Special lntercsr
Group of Ille Computin& in
Education Oroup of Victori•
CCEOV) and lhe Mlllhemlllical
A,.O(ICill.ion or Victoria CMA V).

Edilor"
Anne McDoogall
Leon Ou••

Assis1an1 Edi1or:
Kirsly McDougall

Con1ribu1ions 10 be forwarded
10:

LogoFile Editor
o,Logo
Room 42
Statewide Resource., Centre
2 I 7 Church Street
Richmond VIC 3121

Membership foes arc:
$20 per lndMdual
$JO per organisation.

Anach chequo made payable to
07Logo. Applications should
be forwarded to:

Membership Secretary
071.ogo
Room 42
Statowide Resources Centre
217 Church Street
Richmond VIC 3121

Ed1tonal

This double issue of LogoFile
marks the end of our second
year of publication. Our aim
has been to provide readers
with a wide variety of mate-
rial, ranging from relatively
scholarly articles on topics
such as Logo philosophy,
pedagogy and practice, to
short informal notes, reports
and reviews, as well as plenty
of procedures lo read, try out,
alter and explore.

Responses we have received
so far indicate that LogoFile
is pleasing and useful to at
least some Logo users out
there. We are keen to meet
your needs, so let us know
your ideas for further articles
and features to include.

Contents

We thank everyone who has
contributed to Volumes I and
2 of LogoFile, and in particu-
lar our regular contributors,
Jenny Betts, Peter Carter,
Paul Dench, John Turner,
David Williams, and of
course Dr Turtle (David
Rasmussen).

LogoFile Volume 3. No. 1 is
being prepared now. The
quality of the magazine
depends upon readers and
interested Logophiles sending
in material to include in future
issues. AND WE ARE
WAITING FOR A COVER
GRAPHIC NOW! Send us
your contributions.

Anne McDougall
Leon Guss

Editors

Editorial .. 3

Cover Graphic: BEE DANCE4

The Children's Machine - Review 5

Drawing Glassware for Science 6

Teaching Computer Prograrruning 7

Investigating Languages with Logo 13

Some Flags ... 14

SPIDERQUIZ: An interactive Game 18

Dear Dr Turtle .. 21

Software Development: Towns of France ... 22

Cover Graphrc:
BEE DANCE

"Bee Dance", the graphic
on the cover of this issue of
LogoFile was submitted by
Paul Dench. It was devel-
oped from the work of two
Year 7 students from
Melville Primary School in
Western Australia. The
procedures were written
for a BBC microcomputer.
All of the lengths in the
original code have been
scaled to change the size of
the design so that it fits
conveniently on the screen
of a Macintosh PowerBook.

Bee Dance demonstrates
sophisticated use of ran-
dom variables. The grubs
are randomly distributed
as the cells are drawn.
Note how the bees carry
the honey message by their
random choice of position,
heading and wing angle.

TO BEEDANCE
HIVE
BEES
END

TO ANTENNAE
RT 180 LARC 2 0.6
RT 90 FD 14 BK 14 RT 90
RARC 40.6
LT90 FD 14 BK 14 RT 90
RT 180 LARC 2 0.6
END

TO LARC :STEPS :SIZE
REPEAT:STEPS[FD

:SIZE LT 10)
END

TO RARC :STEPS :SIZE
REPEAT :STEPS [FD

:SIZE RT 10)
END

TO HIVE
WINDOW
HT
PU SETPOS [-136 -70)
SETH60 PD
REPEAT 6 [ROWBACK]
END

TO ROWBACK
ROW FD 9 LT 180 ROW
RT120 FD 9 LT 60 FD 9
RT60FD9 RT60
END

TO ROW
REPEAT 17 [CELL 9 LT

120)
END

TO CELL :SIZE
MAKE "EMPTY TRUE
REPEAT 8 [FD :SIZE RT

60GRUB)
END

TO CIRCLE :SIZE
REPEAT 24 [FD :SIZE

RT 15)
END

TO GRUB
IF AND (EQUAL? 1

RANDOM 40) :EMPTY
[LT 20 RARC 181
CIRCLE 0.8 RARC 18 1
RT20)

END

TO JUMP :X :Y :H
PU SETPOS SE :X :Y, PD
SETH:H
END

TO BEES
HT
JUMP -60 -20 RANDOM

360 BEE
JUMP 60 30 RANDOM 360

BEE
JUMP -40 40 RANDOM

360 BEE
END

TO BEE
BODY
LEGS
ANTENNAE
WINGS
END

TO RLEG :SIZE
RT 85 FD :SIZE RT 45 FD

:SIZE BK :SIZE LT 45
BK :SIZE LT 85

END

TO LLEG :SIZE
RT 85 FD :SIZE LT 45 FD

:SIZE BK :SIZE RT 45
BK :SIZE LT 85

END

TO LEGS
RARC 180.6
LARC 71.2
REPEAT 3 [LLEG 8 LARC

21.2]
LARC 13 1.2
REPEAT 3 [RLEG 8 LARC

21.2]
LARC 4 1.2
RARC 180.6
END

TO BODY
RARC 18 0.6
LARC 18 1.2 .
RARC 361.8
LARC 181.2
RARC 18 0.6
END

TO WINGS
PU RT 90 FD 13 RT 180
FD 30 PD
MAKE; "ANGLE (20 +

RANDOM 90)
RT :ANGLE - 30
WING 23/5
LT2 • :ANGLE
WING 23/5
END

TO WING :SIZE
REPEAT 2 [RARC 7 :SIZE

RT 110]
END

Please send interesting
graphics to the editors for
future cover designs.

Beyond "Mindstorms"
A brief ·tour guide· lo

• The Children s
f\1.-ichine •

C.irolyn Dowling
Austr.ili.in

C.ithol1c Un1vers1ty
V1ctori;i

Papert, Seymour (1993),
The Children's Machine:
Rethinking School in the
Age of the Computer,
New York: Basic Books.
ISBN 0-465-01830-0

This book consolidates a
number of aspects of
Papert's experiences and
thinking during the ten
years or more since the
publication of
Mindstorms. A strongly
polemical work, it ad-
dresses itself to a va.ried
audience including learn-
ers of all ages, teachers,
parents, and policy makers
both in the educational and
the broader political arena.
Against the background of
a perceived need for radi-
cal changes to take place in
schooling as it is currently
experienced by most learn-
ers, Pap~rt focuses on the
way in which the relation-
ship between children and
computers can affect learn-
ing, arguing that" ... the
powerful contribution of
the new technologies in the
enhancement of learning is
the creation of personal
media capable of support-
ing a wide range of intel-
lectual styles" (Pa pert p.
ix).

He himself describes the
book as encompassing
three main themes, firstly,
what is currently taking
place in schools, with
emphases both on the role
of the teacher and on strat-
egies for change, secondly,
his perspectives on how
computing technology and
its associated ideas and
culture have evolved, and
thirdly, his formulation of
a new "theory of learning"
(Papert p. 21).

In arguing the need for
radical as opposed to
piecemeal changes in our
conceptions of teaching
and learning, he contrasts
the rigid and hierarchical
nature both of current
school systems and of the
models of learning and
knowledge which they
endorse, with the values
associated with 'epistemo-
logical plurals', that is,
with the acceptance of a
range of modes of thinking
and knowing, particularly
those which might be
described as more personal
and intuitive. These op-
posing attitudes are crys-
talised in his use of the
terms 'Yeamers' and
'Schoolers'. While the
latter are so conditioned by
the existing system that
they seem unable to con-
template radical alterna-
tives, the former constitute
the 'resistance movement'
who, if they do not move
out of the system, under-
mine it from within by
their adherence to an alter-

native set of values. As
already mentioned, Papert
sees computing technology
as having the potential to
support greater flexibility
in thinking and learning
styles. In this book he pays
particular attention to the
importance of a strong
personal engagement with
learning, and to the need to
legitimise more 'concrete'
forms of thinking and
interaction through recog-
nition of their intrinsic
worth, as opposed to re-
garding them as a 'stage' to
be worked through in the
interests of achieving more
abstract modes of thought.
His substitution of
'letteracy' for 'literacy'
reflects his concern regard-
ing the institutional
privileging of reading and
writing as virtually the
only acceptable routes to
knowledge within our
culture. His propositions
concerning the need for
both new practices and a
new theory of learning
include renewed advocacy
of the use of the term,
'mathetics', originally
suggested in Mindstorms,
and the development of a
new area of intellectual
endeavour for children,
'cybernetics', through
which they might be en-
couraged to understand
and think about the world
in ways less tied to tradi-
tional goals and forms of
logic.

Readers who have been
disconcerted by the appar-
ent neglect of teachers in

Papert's earlier writings,
particularly in
Mindstorms, can be re-
assured that not only is the
balance redressed in The
Children's Machine, but a
credible, characteristically
personal explanation for
this change of focus is _
made explicit.

Some curious features of
this book which probably
reflect both its polemical
purposes and the broad
nature of its intended
audience include an ~-
phasis in the Preface on the
competitive strength be-
stowed by the ability to
learn, and a strong en-
dorsement in the conclud-
ing chapter of a decentral-
ised model of education
encompassing a range of
highly individualised
'little' schools - a concept
which may not sit comfort-
ably with the ideologies of
some proponents of a more
uniform system of public
education.

The Children's Machine is
far too rich and complex a
book to be summed up in a
few paragraphs. In every
chapter a multiplicity of
observances,issues,argu-
ments and examples create
resonances both with
different facets of Papert's
own work over the years,
and with a range of other
contemporary writers and
thinkers. The 'style' of the
book reflects its coi,tent.
Material is presented vari-
ously and often 'playfully',
through formal argument,

and through a quite de-
lightful exploratory 'tinker-
ing' with language.
Through all this, Pa pert' s
personal passion for learn-
ing shines through. The
Children's Machine is
profoundly serious fun -
enjoy it!

Some LogoWriter
Procedures for Dr;:iw111g
Gl;:issw;:ire for Science

Experiments

Nichol;:is Derry
C;:irey Gramm;:ir School

Victoria

TO ARCR :SIZE
REPEAT 10 [FD :SIZE•

0.00174 RT 1)
END

TO ARCL :SIZE
REPEAT 10 [FD :SIZE•

0.00174 LT 1)
END

TO BEAKER :SIZE
LT 90
REPEAT 9 [ARCR :SIZE]
FD :SIZE
PU RT 90 FD :SIZE• 0.9
RT90 PD
FD :SIZE
REPEAT 9 [ARCR :SIZE]
FD :SIZE• 0.7
SETHO
END

LJLJul_l

TO CONICALFLASK :SIZE
LT90
REPEAT 12 [ARCA :SIZE]
FD :SIZE
REPEAT 3 [ARCL :SIZE]
FD :SIZE• 0.5
PU RT 90 FD :SIZE/3 RT

90 PD
FD :SIZE • 0.5
REPEAT 3 [ARCL :SIZE]
FD :SIZE
REPEAT 12 [ARCA :SIZE]
FD :SIZE • 1.25
SETH0
END

TO ROUNDB0TTOMFLASK
:SIZE

LT90
REPEAT 140 [FD :SIZE•

0.0174 RT 1)
REPEAT 50 [FD :SIZE*

0.0174LT1]
FD :SIZE
PU RT 90 FD :SIZE • 0.8
RT90PD
FD:SIZE
REPEAT 50 [FD :SIZE*

0.0174LT1]
REPEAT 140 [FD :SIZE•

0.0174 RT 1)
FD :SIZE • 0.25

) SETH 0 uQ END

TO FILTERFUNN:S~) l J l J l Jl
FD:SIZE Uuuu
LT 40 FD :SIZE
PU RT 130 FD :SIZE • 1.5
RT 130PD
FD :SIZE
LT 40 FD :SIZE
SETH0
END

TO TESTTUBE :SIZE
FD :SIZE
PU
RT 90 FD :SIZE/5 RT 90
PD
FD :SIZE
REPEAT 180 [FD :SIZE•

0.00174 RT 1]
END

Teaching Computer
Programming

Dale Lauton
Victoria

Introduction

Kurland sums up the situation
many computer programming
teachers find themselves in as
follows:

We know far too little about
what to expect students will
learn in a reasonable period
of time, how they leam, what
conceptual difficulties they
encounter, whaJfonns of
cognitive support they many
require to guide them over
these difficulties, or whether
individual differences in
learning styles are reflected

in programming and need to
be guided differently in in-
struction. (Kwland, 1986,
p.240)

What then con titutes effec-
tive teaching of program-
ming? To answer this, teach-
ers will have to engage in
investigative practices them-
selves. I shall llighlight some
approaches that could be
useful; although they many
not be applicable to every
student, they do contain ideas
on how to teach program-
ming. I ball focus, in some
depth, on how programming
can be introduced to primary
and secondary students. The
introduction to computer
programming will essentially
involve non-structured pro-
gramming. Later I shall focus
on how to teach programming
to students who may be
interested in puisuing careers
in computer programming.
This will involve a more
structured type of program-
ming. Although I have distin-
guished between the two
groups (structured and non-
structured programming), I
hasten to add that there is
certainly an overlap of ideas
and teachers should not
hesitate to select ideas from
any group to improve their
teaching approach.

Introducing Programming

Van Merrieoboer identified
three prevalent instructional
approaches to teaching intro-
ductory programming
courses, two of which, the
Expert approach and the
Reading approach, emphasise

that students slart out with
fairly complex code wb.ich
they are to read, understand or
interpret. They look at the
syntax rules only after having
studied the program logic and
flow of control. The tb.ird
strategy, the Spiral approach,
presents syntactic and seman-
tic knowledge simultaneously
in incremental steps, and
therefore programming skills
are not utilised in this method
until quite late in the course
(Van Marrienboer, 1987, p.
253-58).

Whichever approach is used,
teachers should bear in mind
that students come to pro-
gramming with different
motivation, backgrounds,
interests, and biases. Pro-
gramming can and should be
taught with this variety in
mind. The subsequent sug-
gestions are based on the
premise that the teacher will
teach the concepts in an order
that makes the most sense to
beginners, and that is most
intrinsically interesting to
beginners. The goal is not to
weed out those who are not
destined to become computer
scientists; it is to involve and
educate as best we can the
greatest number and variety
of students.

St.art With Graphics

Many textbooks start with
RAM, ROM and CPU and
maybe even with binary
arithmetic, and then (in BA-
SIC, for example), PRINT,
LET, DATA, READ, with
lots of tax and payroll exam-
ples. Students wonder what

this bas to do with anything
they can use or do. Much,
much later the textbook gets
to graphics, inputs, branching
and string manipulations, with
wb.ich students can do more
interesting things. This type
of textbook could easily
influence a teacher, not
trained in ways to teach
programming, to adopt a
similar approach in introduc-
ing programming to students.

The inventors of Logo de-
signed the language to have a
graphics entry point, "a
motivating and understand-
able way to learn some pow-
erful programming ideas"
(Papert, I 980). If children are
encouraged to design their
own graphics projects within
a framework laid down by the
teacher, they will probably
spend more time perfecting it
than they would on other
assignments. Graphics is an
excellent arena in which to
introduce programming
concepts such as variables,
loops and branching.

Give Some Time To Music

Far too many programming
texts are devoted almost
entirely to calculations using
numeric variables. According
to McGrath (1990), "this is a
surefire way to tum off many
girls, minorities, and human-
ists. (That's a large group to
lose all at once!)". There is
no reason that variables,
loops, procedures or recursion
can only be taught through
using mathematical concepts.
These programming ideas are
equally important in other

media as well, and the use of
concepts in more than one
medium should give a boost
to the students' understanding
(Dickson, 1985). For the
majority of children a6d
teenagers, music plays an
imponant role in their culture
and it is for this reason I have
focussed on how to use music
to introduce programming
concepts.

The tune for the Mexican Hat
Dance comprises the notes C
FCFC FCFEFEFGE E
EEEECEFEDFC. The
command
TONE <frequency:. <dura-
tion>
produces a musical note in the
frequency specified by the
first parameter and for the
duration specified by the
second parameter. Toe com-
mand can be demonstrated by
varying the parameters and
letting students discover the
differences in sound with
different parameter values.
The teacher can give the
students a table with the
frequencies of the musical
notes A, B, C, ... etc. and then
challenge the students to play
the Mexican Hat Dance by
executing successive tone
commands. Very soon they
realise that they are repeating
a lot of work. For example,
the note Eis used ten times.
The teacher can then intro-
duce the concept of a proce-
dure and a procedure can be
written for every note.

eg.
TOE
TONE26210
END

Because all the durations are ready to play a tune with only ing courses tend to do better
the same, the song will sound one procedure and two lists, than those who have not
very robot-like. Students will one with frequencies (FREQ) (McGee et al., 1987). Fur-
quickly realise that they must and the other with durations thermore, almost all college
alter the noteS' duration. (DUR). programming students start
They will now be ready for with an introductory computer
the teacher to introduce the eg. science course, even if
concept of a variable. TO PLAY :FREQ :DUA they've already had program-

TONE FIRST :FREQ ming in high school. So
TOE :DUR FIRST:DUR unless teachers are teaching a
TONE 262 :DUR PLAY BUTFIRST :FREQ special Advanced Placement
END BUTFIRST :DUR course, it is not their job to

END prepare them for a beginning
The Mexican Hat Dance now course in computer science,
becomes a sequence of calls The execution ends with an one they won't even take
to procedures playing the error because of the empty unless they understand and
notes C 5 F 10 C 5 F 10 C 5 F list. In order to avoid the enjoy the course.
15 etc. Soon the students error the teacher can intro-
will reali e that to play the duce the IF command. The Let Students Work To-
piece again, it is necessary to new version is listed below: gether On Projects
write the calls all over again.
A solution to this problem can TO PLAY :FREQ :DUR Programming is a very social
tum out to be to write calls IF :FREQ = [] [STOP] process in the professional
inside a procedure say, TONE FIRST :FREQ setting, with programmers
MEXICANHATDANCE. To FIRST:DUR working in teams to complete
play the piece again simply PLAY BUTFIRST :FREQ systems of programs. In a
type in BUTFIRST :DUR school atmosphere, a teach-
MEXICANHATDANCE. END er's concern with individual

accountability and evaluation
As more elaborate pieces of So one can go on teaching often overshadows this social
music are attempted, students various computer program- aspect. MacGregor { 1988)
will realise that it is quite ming concepts through music. found out that students spent
laborious to write a procedure more time planning their
for every note appearing in Accept Both Top-Down and programs when their work
the tune. The teacher can Bottom-Up Programming was to be critiqued by their
introduce the concept of a list fellow students. Research by
of numbers as well as the One factor that often prevents Webb (1986) revealed that
functions FIRST and teachers from allowing bot- students were more successful
BUTFIRST. The students tom-up programming, even with their own program
can do several exercises to among beginners, is perceived generation if they participated
make sure that they under- pressure from the university. in group discussion during the
stand these three new con- University professors often planning phase.
cepts. Neitt, the teacher can claim that pre-university
introduce recursion but Jet the teaching of programming is Girls, especially, have a
procedures that use it end so sloppy that it makes teach- difficult time getting involved
with an error comment, i.e. ing university computer with computers because it is
when the list is exhausted. science more difficult. In such a solitary activity. When
The MAKE command could fact, beginning college com- it becomes a social activity,
also be introduced at this puter science students who girls enjoy it more. What this
time. The students are now have taken previous comput- points to is that teachers

should occasionally allow
group planning of projects.

Debugging

In the early stage Harvey
(I 99 I) believes that debug-
ging should not be a large pan
of a swdent's experience. Jt
is true that debugging is an
excellent mental exercise, but
real beginners tend to make
uninteresting mistakes.
Spending 15 minutes strug-
gling with an unnoticed
punctuation error could result
in frustration, so sometimes it
is better to debug a begjnner' s
program and encourage the
student to get on with the big
idea that the bug interrupted.
Only if the bug seems to
indicate a serious conceptual
misunderstanding, then only
should a teacher perhaps
explain the conceptual error
to the sllldent or class.

Use Motivating, Interactive
Assignments Like Games

Allow students to program
their own version of a game,
like Guess My Number,
Hangperson, or MasterMind
(some are tougher than oth-
ers). It is sometimes better to
allow students to begin work-
ing on assignments on the
computer and when they
encounter problems, the
teacher wiU have a good
reason to show them that
sometimes (especially with
more complicated programs),
it is better to plan on paper in
advance. This leads us on to
structured programming.

paQe 10

Structured PrograJlltning

So what is structured pro-
gramming? It is defined as a
systematic way of designing,
building, validating and
documenting computer pro-
grams which leads to the
production of efficient and
reliable software. I would
recommend that this type of
programming be pursued by
those interested in following
computer programming
careers.

Ingram (1988) designed an
instructional model for teach-
ing s1ructured programming
(top-down design). In top-
down programming, a prob-
lem is divided into major
subtasks. Each subtask is
further divided into smaller
subtasks and each succe sive
subdivision is known as
stepwise refinement Re-
search by Ingram showed
students were more successful
when they followed a four
step plan:
• describing the problem.
• dividing the problem into
modules.
• writing algorithms for each
module.
• translating the algorithm
into code.

Ingram reported that students
found difficulty in breaking
the problem into smaller
modules. This was because
the practice examples were
too small or trivial to be
easily subdivided. Teachers
should be aware of this and
examples should lend them-
selves to easy subdivision.

Writing an Algorithm ror
the Program/Module

Students have to understand
algorithms and to develop
algorithms by themselves.
Algorithms are "abstracl
representations of program
logic, and many students are
not capable of thinking at the
level of abstraction required".
(Oliver, 1992) . .So how is it
possible to teach students how
to design algorithms?

Typical Problem:
A company pays its employees
an allowance for private use
of their motor vehicles. Em-
ployees are paid 35c per km
travelled if their car engine
size is less than 2000cc and
45c per km if their car has an
engine of size 2000cc or
more. Plan a program to
calculate an employee's
allowance for car use.

It is not difficult 10 imagine
the discussion that would
accompany the teaching of
this algorithm in a typical
classroom. Some teachers
would discuss the inputs
required, then the processing,
and then finally the output.
At the end of the lesson,
students would be expected to
describe the steps and to trace
the algorithm with specific
data , for example, 500km
travelled in a 2500cc car.

Does this form of instruction
lead students to an under-
standing of the algorithm?
Oliver(l992), from evidence
of observing teachers discus -
ing algorithms, suggests that

A~orithrnjc Step

l. What is the required endpoint? Allowance
2. How is allowance calculated? Allowance= Rate*Kilometres
3. How is rate determined?
4. What information is needed?

When Size< 2000, rate= 0.35 otherwise rate= 0.45
Read kilometre , Size

Figure 1

this instruction is frequently provide values for kilometres ments promptly; explaining to
not effective. and rate. Kilometres is a small groups or individuals

value that can be entered how to improve programs;
The alternative method in- directly while rate is deter- providing a solution to the
volves showing the algorithm mined by the size of the assignments; and describing
to students in reverse fashion, engine. Guided by this infor- different ways in which the
with the development starting mation, we can determine the assignment could have been
from the final step in the remainder of the algorithm. solved.
solution and proceeding back See Figure I (above).
to the starting position. As Research by Ross (1989)
each new step is determined, When describing an algo- revealed that low ability
the focus turns to those which ritbm, it is possible to gauge students benefited from
precede it. At all times there the level of understanding unlimited access ti me, while
is focus on unravelling the achieved by students by medium and high ability
solution and a direction to having them suggest the next students performed better in a
follow. The method is a form step. In the research project, restricted access environment.
of top-down design that goes it was noticeable that with
from the bottom-up. To conventional teaching only Debugging
illustrate this method, I will the more able students in the
look at the preceding exam- class would participate in Before a program could be
pie. discussions. When this considered complete, all the

alternative approach to algo- syntax and logical errors had
We can start the algorithm by ritbm development was used, to be removed in the debug-
discussing the required output the number of students who ging process. Pascal students
of the program, the ALLOW- participated in the discussion spent as much as 47% if their
ANCE·to be paid. The stu- rose considerably. An unex- lab time on debugging related
dent writes down Allowance. pected outcome of this teach- activities (Pintrich, 1987)
All that remains is how the ing strategy was the help it
Allowance might be calcu- provided students in creating Research by Linn revealed
lated. their own algorithms. that experienced programmers

could identify bugs in a
The ALLOWANCE is calcu- Once the student had the matter of seconds just from
lated by multiplying the algorithm planned, it was then looking at the output. For
kilometres travelled by the time to write the code. Linn example, if a numerical value
appropriate rate, found that feedback had a was grossly inaccurate, the
ALLOWANCE= direct effect on student per- most likely problem would be
KJLOMETRES*RA TE. formance. Feedback con- an uninitialised variable; if
At this stage in the develop- sisted of teachers writing the output was close to being
ment of the algorithm, we comments on completed correct, a loop process could
need to include steps that will assignments; returning assign- have been off by one. If

teachers could anticipate Conclusion Uon, M. C. (1988) Autono-
students' errors, debugging mous Classroom Environ-
time could be cut down J have highlighted some of the ments for Learning, Progress
significantly. To clear up approaches that could be used Report and Annotated
misconceptions and encour- in teaching programming both Bibliography. May, 1-13.
age debugging skills, teachers to introductory and advanced
should require students 10 courses. Because teaching is MacGregor, S. (1988) The
read programs and predict the personality based, different Structured Walle-Through,
output, and closely track the teachers will adopt different The Computing Teacher,
changing status of variables approaches, but the main goal 15 (9), 7-10. -
during execution. always should be to facilitate

the students' learning and McGee, L. et al. (1987) The
New programming environ- understanding. This will Influence of Basic on Per-
ments may have changed the entail responding 10 indi- formance in lntroducLOry
cognitive skills required for vidual students and small Computer Science Courses
debugging. The new editors groups in such a way as to Using Pascal SIGCSE
have good trace routines, build on their existing know]- Bulletin. 19 (3), 29-37.
windows displaying both the edge base and enable them to
code and the corresponding extend their ideas by using the McGrath, D. (1990) Eight
output simultaneously on the appropriate programming Ways To Get Beginners
screen, and step-by-step techniques. Involved in Programming,
execution that displays the The Computing Teacher.
changing values of the vari- References Sept, 19-20.
ables as the program executes.

Dickson, W. P. (1985) Oliver, R. (1992) A Back-
Samurcay (1985) studied Thought-provoking Software: ward Approach to teaching
students' use of their existing Juxtaposing Symbol Systems, Algorithms, The Computing
mathematical models in Educational Researcher. 14 Teacher. Nov, 17-18.
understanding programming (5), 30-38.
concepts. In many cases, the Papert, S. (1980)
model is acceptable, but there Harvey, B. (1991) Symbolic Mindstorms: Children,
were differences of which the Programming vs. the A. P. Computers and Powerful
student needed to be made Curriculum, The Computing Ideas. New York: Basic
aware explicitly. In math- Teacher. Feb, 27-30. Books.
ematics, for example, the
equal symbol meant equality, Ingram, A. L. (1988) In- Pintrich, P. R. (1987) Stu-
but as part of a programming tructional Design for Heuris- dents' Programming Behav-
assignment statement, it tic-Based Problem Solving, iour in a Pascal Course,
displays an asymmetric Educational Communica- Journal or Research in
relationship. A variable has a tlon and Technology Jour- Science Teaching. 24 (5),
unique value in maths lhat nal. 36 (4), 211-30. 451-66.
remains static throughout the
problem, while in program- Kurland, D. et al. (1986) A Ross, M. S. (1989) Compu-
ming, a variable often has a study of the Development of ter Access and Flowcharting
dynamic changing value. In Programming Ability and as Variables in Learning
the accumulation process, Thinking Skills in High Computer Programming,
n = n + I, for example, the School students, Journal of Report: Annual meeting of
same variable designated both Educational Computing the association for Educa-
a previous and present value Research. 2 (4), 429-458. tional Communications and
in programming. Technology. Feb, 1-10.

amurcay, R. (1985) Learn-
ing Programming: An Analy-
si of Looping Strategies
Used by Beginning Students,
For the Leaming of Math-
ematics. 5 (I), 37-43.

Van Merrienboer, J. G.
(I 987) Instructional Strate-
gies and Tactics for the De-
sign of Introductory Compu-
ter Programming Courses in
High School, Instructional
Science. I 6 (3), 251-85.

Webb, N. M. et al. (1986)
Problem Solving Strategies
and Group Processes in Small
Groups Learning Computer
Programming, American
Educational Research Jour-
nal. 23 (2), 243-61.

An Investigation into
Language with Logo

Debora Goldman
Mount Scopus

Memorial College
Victoria

During the July Logo confer-
ence one of the workshops
that raised a number of ques-
tions about learning was the
one run by Paul Goldenberg.
These questions were directed
towards the way in which
rules for the formation of
language are learnt by chil-
dren. My last contact with
language rules was of the
form of kill and drill, when
students were presented with
a list of words to learn.

Paul challenged us to play,
develop and explore for

ourselves some basic lan-
guage rules. Initially he look
us through neat sequential
developmental steps that
showed how the topic could
be introduced with any class,
even those not fully Logo
literate.

The following program was
developed during this work-
shop. Its airn was to attach
prefixes to words to negate
the word, eg. "literate" to
"illiterate". After running this
program through there are
obvious words that do not fit
the rules. The program tested
whether there was a need to
"double" the fir t leuer, for
words beginning with "r" and
"I", and for the attachment of
"im" and 0 in" to others. The
aim is for the student to test as
many word as required until
an appreciation for the rules
and its exceptions are under-
stood.

The program that starts the
procedures is REDO. It runs
the program IO ti.mes and
prints out the result from
CHECK using the re ults
from FBB and LBB as the
variables for CHECK. The
CHECK procedure tests
whether the last letter of the
prefix matches the first letter
of the word. If both are either
an "I" or an "r" the appropri-
ate prefix is attached {double
the letter). Further tests
attach the prefix "im" 10
words beginning with "p",
and the "ir" prefix to words
beginning with "s" and "c".

TO REDO
REPEAT 10 [PRINT

CHECK FBB LBB]
END

TOFBB
OP PICK [IL IM IR IN]
END

TOLBB
OP PICK [LOGICAL

POSSIBLE PLAUSIBLE
RELEVANT
COMPETENT SECURE
REGULAR
RESPONSIBLE
RATIONAL LOVABLE
LIKEABLE LITERATE
PARTICULAR PARTIAL
PLANNED POPULAR
SENSITIVE SATIABLE
SATURATED CAPABLE
COOPERATIVE)

END

TO PICK :OBJ
OP ITEM (1+RANDOM

COUNT :OBJ) :OBJ
END

TO CHECK :PRE :END
IF AND ("r= FIRST :END)

("r= LAST :PRE) [OP
(WORD :PRE :END))

IF AND ("I= FIRST :END)
("I= LAST :PRE) [OP
(WORD :PRE :END)]

IF AND ("s= FIRST :END)
("n= LAST :PRE) [OP

(WORD :PRE :END)]
IF AND ("e= FIRST :ENO)

("n= LAST :PRE) [OP
(WORD :PRE :END)]

CHECK FBB LBB
END

A run delivers ten words similar to the foUow-
ing sample run:

IRRATIONAL
INCAPABLE
ILLITERATE
INCOMPETENT
ILLOVABLE
IRREGULAR
ILLOGICAL
INCOOPERA TIVE
INSATIABLE
IRRESPONSIBLE

The only problem is that sometimes there may
be a word or two that repeats on screen. This
"bug" has yet to be corrected. Perhaps you can
finish off this program and send in your solu-
tion. Hopefully this will be of use to you in
some format. If this seems too difficult or you
would like a different slant I suggest getting
hold of Paul Goldenberg's book: E.P.
Goldenberg and W. Feurzeig, Exploring Lan-
guage with Logo, The MIT Press, Cambridge,
MA, 1987.

Some Flags

Peter J Carter
Lockleys. South Australia

For ten years I've been using flags as Logo
programming exercises. Although many flags
use a few simple shapes, there is often a lot of
thought needed to find the best way to draw
those shapes, even the order in which to draw
them.

I used to insist that flags fill the entire Logo
screen, but the Mac LogoWriter screen is too
long and narrow for many nags, so I use the
correct flag proportions.

Most encyclopedias have a section on flags.
The Flag Society of Australia (POB 142,
Collins Street, Melbourne, Victoria 3000)
publishes a chart, Flags of Non-lndeperulent
Peoples, ($13, l think) with many flags you
won't find elsewhere. I used it as the reference

/

for the Lapland flag.

This is obviously not the place to debate a
new Oag for Australia, but here's one way to
experiment with a few ideas. You might try
stamping Turtles instead of drawing stars for
an Australian Logo flag.

AusFlag 91, the Latest in AusFlag's Series
of Possible New Australian Flags.

The odd way of drawing the stars in the field
colour and then Fll . .Ling came about because
at the time 1 wrote this I didn't understand
how colour O behaved. These days I'd use
colour 249.

TO AUSFLAG91
FIELD
CRUX
PU HOME PD FILL
END

TO STAR7 :SIZE
REPEAT 7 [FD :SIZE RT 141.4 FD :SIZE
LT90)

END

TO STARS :SIZE
REPEAT 5 [FD :SIZE RT 144 FD :SIZE

LT72]
END

TO FIELD
CG HTSETC4
PU SETPOS [-248 -110] PD
REPEAT 2 [FD 220 AT 90 FD 302 RT 90]
END

TO CRUX
PU SETPOS [-107 -70] SETH 19 PD
STAR7 10
PU SETPOS [-107 90] PO
STAR710
PU SETPOS [-167 10] PD
STAA710
PU SETPOS [-47 35] PO
STAR7 10
PU SETPOS [-70-10] SETH 90 PD
STARS 8
END

Christmas Flag

A Christmas flag designed by Tony Burton, of
FlagGraphics in Sydney for Christmas 1991,
and described in Crux Australis, Vol 7/4, No 32,
December 199 1

TO CHRISTMAS
FIELD
STAR 90
FILLSTAR 90
END

TO FIELD
HT
PU SETC 236 PD FILL
S!;TC 25
END

TO STAR :SIZE
PU SETPOS [-40 30] SETH 315 PD
REPEAT 4 [FD :SIZE• .7071 LT 135
FD :SIZE LT 90
FD :SIZE LT 135
FD :SIZE• .7071 RT 45
FD :SIZE/ 2.47 RT 135
FD :SIZE• 1.4142 / 2.47
RT 135 FD SIZE/ 2.47
PU FD :SIZE • 1 .4142 / 2.2
LT 45 PD]

END

TO FILLSTAR :SIZE
PU
REPEAT 4 [RT 90 FD 5 PD FILL

PU BK 10 PD FILL
PU FD 5 LT 135
FD :SIZE* 1.4142 / 2.2
LT 45]

PU FD :SIZE / 2.1875
REPEAT 4 [LT 45

BK 5 PD FILL
PU FD 10 PD FILL
PU BK 5 LT 45
FD :SIZE / 1 .0932)

PU LT 135 FD :SIZE* .707
PD FILL
END

The Flag of Lapland (Sapmi)

Developed from the Flags of Non-Independ-
ent Peoples chart by Clive Jack on.

TO LAPLAND
AG HT SETBG 8
BLOCKS
CIRCLE
END

TO BLOCKS
PU SETPOS [-165-110J PD SETC 5
PO BLOCK 220 94
PU SETPOS [-71 -110J PD SETC 234
PD BLOCK 220 27
PU SETPOS [-44 -11 OJ PD SETC 15
PD BLOCK 220 27
PU SETPOS [-17 -11 OJ PD SETC 4
PD BLOCK 220 172
END

TO CIRCLE
PU SETPOS [•44 57] SETH 90 PD
SETC 5 ARCA 57 180
SETC 4 ARCA 57 180
PU SETPOS [-44 62] SETH 90 PD
SETC 5 ARCA 62 180
SETC 4 ARCA 62 180
PU SETPOS [-57 58] PD FILL
PU SETPOS [-104 OJ PD FILL
PU SETPOS [-57 -58] PD FILL
SETC5
PU SETPOS [-31 58] PD FILL
PU SETPOS [14 OJ PD FILL
PU SETPOS [-31 -58) PD FILL
END

TO BLOCK :LENGTH :WIDTH
REPEAT 2 [FD :LENGTH RT 90 FD

:WIDTH RT 90)
PU RT 45 FD 5 PD FILL
PU BK5 LT 45
END

TO ARCA :RADIUS :ANGLE
LOCAL [STEP REM)
MAKE 'STEP 2 • :RADIUS •Pl/ 36
MAKE "REM REMAINDER :ANGLE 10
REPEAT :ANGLE/ 10 [RT 5 FD :STEP

ATS]
IF :REM> 0 [FD :STEP• :REM/ 10 RT

:REM]
END

The Namibian flag

TO NAMIBIA
OUTLINE
RED
GREEN
BLUE
SUN
END

TO OUTLINE
CG HT SETC 1
PU SETPOS [-159 -95) PD
REPEAT 2 [FD 190 RT 90 FD 320 RT 90]
END

TO RED
SETC5
PU SETPOS [-159 -95) PD
SETPOS (-159 -77)
SETPOS (112 95)
SETPOS [160 95)
SETPOS [160 77]
SETPOS [-112-95)
SETPOS (-159 -95)
PU HOME PD FILL
END

TOGAEEN
SETC 235
PU SETPOS [-98-95) PD
SETPOS [160 70)
SETPOS [160 -95]
SETPOS (-98 -95)
PU SETPOS [100 OJ
PD FILL
END

TO BLUE
SETC 212
PU SETPOS [98 95) PO
SETPOS [· 159 -70)
SETPOS [-159 95)
SETPOS (98 95]
PU SETPOS [·100 60)
PD FILL
END .

TO SUN
SETC 25 SETH 15
REPEAT 12 [POINT]
PU SETPOS (-110 40) SETH o
PD CIRCLER 15
PU SETPOS [-95 40)
PD FILL
END

TO POINT
FD 20 RT 150
FD 20 RT 105
FD 10.4 BK 10.4
RT 60 PU FD 4 PD FILL
BK 4RT75
END

TO CIRCLER :RADIUS
LOCAL "STEP
MAKE "STEP 2 • :RADIUS• Pl/ 36
REPEAT 36 [RT 5 FD :STEP RT 5)
END

The Flag of the Northern Territory

TO NT
SETFIELD
CRUX
ROSE
END

TO SETFIELD
AG HT
SETBG 0
SETC12
PU SETPOS [·53 -95) PD
REPEAT 2 [FD 190 RT 90 FD 213 RT 90]
PU SETPOS (120 0] PD FILL
END

The stars on this Southern Ooss are different
from those on the Australian flag: 8, 7, 6 and
5 points. (The new National Australia Bank
Flags of the Nations brochure has printed it
wrongly.)

TO CRUX
SETC 1
PU SETPOS (-106 -50) SETH 22.5 PD
STAR 6 8
PU SETPOS [-132 OJ SETH 22.5 PD
STAR 6 7
PU SETPOS [·106 50) SETH 22.5 PD
STAR 6 7
PU SETPOS (-79 10) SETH 22.5 PD
STAR 6 6
PU SETPOS (-93 -10) SETH 22.5 PD
STAR 6 5
END

TO STAR :SIZE :POINTS
REPEAT :POINTS [FD :SIZE RT 135 FD

:SIZE LT 135 - (360 I :POINTS))
PU RT 90 FD :SIZE / 2 PD FILL
END

The flower is a Sturt's Desert Rose. Two
FILLs are needed in the petals because the
outline crosses the boundary of the centre
circle.

TO ROSE
SETC0
PU SETPOS [28 OJ SETH 0 PD
ARCA 25 360
PU SETPOS (53 OJ PD FILL
SETC 1
REPEAT 7 [PETAL RT 360 / 7]
END

TO PETAL
PU FD 18 LT90 PD
ARCA 8 35
ARCA 20 60
ARCA 5 60
ARCA 24 50
ARCA 5 60
ARCR20 60
ARCA 8 35
PU RT 90 FD 5 PD FILL

• • •* •
PU FD 5 PD FILL
PU BK 28
END

ARCA is taken from the tools
page:

TOARCR :RADIUS
:DEGREES

MAKE "STEPS (2 •
:RADIUS• 3.1416 / 36)

MAKE "REM REMAINDER
:DEGREES 10

REPEAT :DEGREES/ 10
[RT 5 FD :STEPS RT 5)

IF :REM> 0 [FD :STEPS•
:REM / 10 RT :REM]

END

SPIDEROUIZ
An Inter ilCtive Gi1111c

Tonra Chi!pmiln
\Vcst,111 Primary School

Victoria

SPIDERQUIZ was designed
to accompany pan of a Grade
3 & 4 ESL Science/Language
program. It is linked with a
Grade 4 unit of study "Creepy
Crawlies", part of a "Scien-
lists in Schools" program.
Some of the children had a
particular fascination for
spiders, and there had been a
few residential spiders in the
classroom (including the odd
plastic one landing on the
teacher).

The game is interactive in
nature, as long as the children

playing can read simple teaching tool to see how well
English. The graphics appear children are reading and using
in relation to the subject knowledge gained in class. It
matter according to different also provides a model of
questions in the quiz. The LogoWriter program.ming that
fonnat of the game is simple, the children could aspire to as
and can be used as long as the their skills in procedure
people using it attempt to key writing develop.
in answers and retum. The
quiz allows for incorrect TO SPIDERQUIZ
answers and gives opponuni- TlnE
ties for funher attempts. It TtnE2
gives opponunities to change SETUP
each question slightly, allow- CLIMBS
ing sometimes for a choice of QUIZ1
two answers. QUIZ2

FLY
The opening titles use CATERPILLAR
STAMP to announce the QUIZ3
game. Four animated spiders QUIZ4
in the CLIMB procedure walk QUIZS
in a circle before they branch QUIZ6
off to the four comers of the SETUP
screen. The spiders are made CLIMBS
from three different shapes QUIZ?
drawn in the shapes editor. wow

END
FLY and CATERPILLAR are
similar procedures, using TOQUIZ1
multiple shapes and some SETBG 50
animation. PR [HOW MANY EYES)

PR [DOES A SPIDER
GROWTRIANGLE makes a HAVE?]
randomly multicoloured MAKE "ANS1 READLIST
spiderweb. SPIWEB in- IF OR :ANS1 = [8) :ANS1 =
eludes two spiders spinning [EIGHT] [PR [EXACTLY!)
the web, and each triangle STOP]
segment is drawn in a differ- PR [ARE YOU SURE?]
ent colour. Random colour PR [DO YOU WANT TO
was used here, and the on TRY AGAIN?]
screen result has a shimmer- MAKE "TRY READLIST
ing, semi-transparent quality, IF :TRY = [NO) [PR [THE
from the overlapping trian- ANSWER IS 8) STOP]
gles. IF :TRY = (YES) [PR

(GOOD.] QUIZ1 STOP]
SPIDEROUIZ can be modi- END
tied and adapted, simplified
or extended. Questions can TOQUIZ2
be added or answers changed SETBG 90
within the lists. It is a useful PR [WHAT DO SPIDERS

CATCH]
PR [IN THEIR WEBS?]
MAKE "ANS2 READLIST
IF OR :ANS2 = [FLIES] :ANS2 =
[INSECTS] [PR (YES])

PR [CAN YOU MAKE ANOTHER GUESS?]
MAKE ''TRY READLIST
IF :TRY= [NO] [PR [OK, THANKS FOR
TRYING.] STOP)

IF :TRY= [YES] [QUIZ2 STOP]
END

TOQUIZ3
SETBG 130
PR [CAN YOU THINK OF A SPIDER WEB
NAME]

PR [THAT BEGINS WITH THE LETTER
O?}

MAKE "ANS3 READLIST
IF OR :ANS3 = [ORB] :ANS3 = [ORB WEB]
[PR [CORRECT! WATCH THE WEB
GROW.] STOP]

PR [WOULD YOU LIKE ANOTHER
CLUE?]

MAKE ''TRY READLIST
IF :TRY= [YES] [PR [THE NEXT LETTER
IS R.] QUIZ3 STOP]

IF :TRY= [NO] [PR [THE ANSWER IS ORB
WEB. WATCH THE WEB GROW.] STOP]

END

TOQUIZ4
SETBG 32
PU SETPOS [40 10] PD
SETSH 1
SETC RANDOM (1 + 256)
SPIWEB
END

TOQUIZ5
SETBG 29
PR [HOW MANY TRIANGLES IN THE
WEB?]

MAKE "ANS5 READLIST
IF :ANS5 = [6} [PR [THAT'S RIGHT!]
STOP]

PR [THERE ARE 6 TRIANGLES. IT IS A
HEXAGONAL SHAPE.]

END

TOQUIZ6
SETBG60
PR [WHAT DO SPIDERLINGS HATCH
FROM?]

MAKE "ANS6 READLIST
IF :ANS6 = [EGGS] [PR (YOU CAN'T BE

TRICKED, CAN YOU?} STOP]
PR [TRY AGAIN. THE WORD HAS A
DOUBLE LETTER IN IT.]

PR [DO YOU WANT TO HAVE
ANOTHER GO?]

MAKE ''TRY READLIST
IF :TRY= [YES] [QUIZ6 STOP]
IF :TRY= [NO] [PR [THE ANSWER IS
EGGS.} STOP]

END

TO QUIZ?
SETBG 83
PR [WHAT IS A FAMOUS STORY
ABOUT A SPIDER?]

PR [THERE ARE TWO CHOICES.]
PR [TRY TO SPELL THE TITLE
CAREFULLY.]

MAKE "ANS? READLIST
IF OR :ANS? = [ARANEA] :ANS? =
[CHARLOTTE'S WEB] [PR [DID YOU
ENJOY IT?]]

MAKE ''TRY READLIST
IF :TRY= [YES] [PR [THAT'S NICE TO
KNOW.} STOP]

IF :TRY= [NO] [PR [THAT'S OK. NOT
EVERYONE ENJOYS SPIDER
STORIES.] STOP]

END

TO GROWTRIANGLE :SIDE
IF :SIDE> 100 [STOP]
TRIANGLE :SIDE
GROWTRIANGLE :SIDE +5
END

TO TRIANGLE :SIDE
REPEAT 3 [FD :SIDE RT 120]
END

TO SPIWEB
REPEAT6 [GROWTRIANGLE 1 RT60
SETC RANDOM (1 + 256))

END

TO WOW
SETBG 155
TELL ALL PU
TELL (1 2 3) HT
TELL O RT 45 SETSH 31 FD 20 WAIT
10 PD STAMP

SETSH 32 PU FD 20 WAIT 10 PD
STAMP

SETSH 33 PU RT 3 FD 20 WAIT 10 PD
STAMP

SETSH 41 PU FD 20 WAIT 10 PD
STAMP

SETSH 38 RT 45 PU FD 20 WAIT 10 PO
STAMP

SETSH 40 RT 45 PU FD 20 WAIT 10 PD
STAMP

SETSH 42 PU FD 20 WAIT 10 PD
STAMP

SETSH 43 LT 45 PU RT 45 FD 20 WAIT
14 PD STAMP

SETSH 44 PU FD 20 WAIT 10 PD
STAMP

SETSH 45 PU FD 20 WAIT 10 PD
STAMP

END

TO CLIMB
PU
SETSH 1
FD SWAIT 10
SETSH 2
WAITS
SETSH 3
FDS
WAITS
SETSH 3
FD SWAIT 10
SETSH 2
WAIT10
END

TO CLIMBS
TELL (0 1 2 3) ST
REPEAT 10 [CLIMB RT 36)
REPEAT 9 [CLIMB)
TELL (1 2 3) HT
END

TO SETUP
SETBG 28
TELL ALL HOME PU

TELLO RT 45 SETC 238 TELL 1 RT 135
SETC 239 TELL 2 LT 135 SETC 150

TELL 3 LT 45 SETC 225
END

TO SETSHAPES
TELL 0 SETSH 4
TELL (123]
STSETSH 5
END

TO LINE
TELL ALL
CGPU
SETPOS (00)
RT 90 TELL 1 BK 12
TELL2 BK 24
TELL 3 BK 36
END

TO CRAWL
REPEAT 10 [TELL ALL EACH [FD 1 o
WAIT 10] WAIT 30]

END

TO CATERPILLAR
SETSHAPES LINE CRAWL
END

TO SETSHAPES1
TELL 0 SETSH 6
TELL 1 ST
SETSH 7
END

TO LINE1
TELL ALL
CG PU
SETPOS[O OJ
RT 90 TELL 1 BK 15
END

TO BUZZ
REPEAT 10 [TELL ALL

EACH [FD 10WAIT 10
RT 45] WAIT 30]

END

TO FLY
SETSHAPES1 LINE1
BUZZ
END

TO TITLE
PU
TELL 0 SETPOS [80 40]
TELL (1 2 3] HT
TELLO PU ST
FD50SETC 10
SETSH 31 PD STAMP PU
BK20SETC 25
SETSH 32 PD STAMP PU
BK 20 SETC 225
SETSH 33 PD STAMP PU
BK 20 SETC 216
SETSH 41 PD STAMP PU
BK 20 SETC 151
SETSH 38 PD STAMP PU
BK 20 SETC 229
SETSH 40 PD STAMP PU
END

TOTITLE2
RT90 FD 20
SETC25
SETSH 42 PD STAMP PU
FD20
SETC216
SETSH 43 PD STAMP PU
FD20
SETC 151
SETSH 44 PD STAMP PU
FD20
SETC200
SETSH 45 PD STAMP PU
FD20
TELLO HT
END

TO RUB
CLEAN
END

Dear Dr. Turtle.

Here's a problem I'm often
asked about :

How can I print out the
shapes from the Shapes page
and their numbers when I'm
using Logo Writer for the IBM
or IBM compatible?

Well, it's simple. Just get all
of the shapes showing on the
screen on any page and print
them with PRINTSCREEN!
There's one little catch. How
do you get them to show
themselves on the workpage?

Here's one method. It should
be easily adapted for other
Logo Writers or Logos if
needed.

TO SHOWSHAPES :N
AG CTHT
SETSH :N- 1
PU SETPOS (-135 65]
MAKE "Y LAST POS
REPEAT 5 [REPEAT 6
[SETSH SHAPE + 1
LABEL SHAPE PU FD 25
PS FD 25] MOVE]

END

TOPS
PD STAMP PU
END

TO MOVE
MAKE "Y :Y - 30
PU SETPOS SE-135 :Y
END

Now to show the first 30
shapes, type
SHOWSHAPES 1 then print
them out with

PRINTSCREEN.

Then you can type
SHOWSHAPES 31
and print them etc., etc.

(Of course, the above proce-
dures are not "bullet proof'.
You would only have to type
SHOWSHAPES 99, for
example, and an error will
occur. I assumed you would
want to use them in a normal
fashion, hut if you want to
make them fool proof, you
could easily set some error
traps, to test whether :N is in
an acceptable range or not, for
instance.) Happy shaping.

By the way, I have a problem
and maybe someone out there
can help ME for a change.
You see, I have some pictures
that I have scanned in and I
want to load them into my PC
Notebook inLogoWriter. But
when LCSI "built"
Logo Writer, they made it
recognise only one peculiar
picture format. When I try to
load my picture with
LOADPIC I get an error
message saying "Wrong file
format". I have tried several
file formats using a file con-
version program but nothing
seems to help.

If you can offer any help/
advice/suggestions, please
write your answer to the
editor of LogoFile. I' II pub-
lish the solution in one of my
columns.

Dr. Turtle

lnv0st1g,1tinq Loqo .is .i
Prog1.1111m1ng .ind

Softw.ire Development
Env11on111ent: ·n,e
Towns of Fr.ince"

W. rvl.irtin Boyle
~lelbourne Gr .irnm.ir

School
Vrctor,.i

Setting the Scene

I set myself a problem the
solution to which was to be
coded in Logo. I use this
problem as a standard to test
the functions of various
programming languages and I
wanted to move away from
the only aspect of Logo which
I had seen before - turtle
graphics. I was fairly profi-
cient in using the turtle, but
had no knowledge of other
aspects of the language, so I
was learning as I worked on
the projecL

Problem Specification

Display a map of France and
a list of towns in France. A
town is chosen at random and
an appropriate symbol is
displayed at the correct posi-
tion on the map. The user is
invited to enter the letter
corresponding to the town,
and if correct is told so in an
encouraging manner. If the
response is incorrect the user
must try again until correct.
As the towns are correctly
chosen they are removed until
all twelve towns in the list
have been displayed.

I have a full top-down design
and graphics grid for the
solution to the problem so my
main concern was to tran late
those designs into something
which could be coded in
Logo.

First I wanted to place text at
given positions on the VDU.
I started by trying the PRINT
command but found I had no
control over the po itioning as
it was by default on the left.
The LCSJ manual introduced
me to SETPOS and LABEL
solving the problem.

I wanted to be able to play the
National Anthem of France.
The LCSI Logo reference
Guide (p. 2-96) gives a won-
derfully useful table of the
code numbers for our mu ical
notation. (I've spent many
hours working these out for
other languages!) A bit of
bit-and-miss whistling and the
useful note on WAIT in the
manual soon gave rise to a
somewhat off-key
Marseillaise.

The immediacy of the graphi-
cal interface in Logo is a real
delight for a junior secondary
software developer, though it
must be said that the IBM
version (which I used) is
gro sly inferior in comparison
to the Mac!

A book by Haigh (1986) gave
me my start for designing the
graphics of the map of
France. An excellent section
on the United States described
a technique of closed curve
filling which was exactly
what I wanted. I decided to

display the map on the right
of the screen and the town list
on the left so I could use
simple PRINT statements for
the town list.

What versatility and what fun
to be able to design your own
shapes! In comparison my
previous versions of this
software have been dull! My
first intention was that the
flashing cursor representing a
town would be a circle but
then I designed on the shapes
an Eiffel Tower as cursor.

Then a powerful idea for
children developed: design a
shape which gives a visual
clue as to the name of the
town and display that shape in
the town's location. Thus the
Eiffel Tower will be used for
Paris, a red wine bottle for
Bordeaux, a bridge for Avi-
gnon, and so on. Some quite
detailed research is needed so
that the town hapes are
placed at the correct position
on the map.

My excitement at this discov-
ery in Logo was fuelled by
realising that now as well as
gaining knowledge about the
geography of France we had
the bonus of knowledge of the
culture of the country. This
will become a powerful idea
in my development of the
software for next year's
Grade Seven.

Now for some interesting
programming! I want a
procedure which will:
I. check to see if all ilie towns
have been displayed; thus I
need a suitable data structure

to hold the towns; removed from the list and I expected, easy to implement
2. create a number at random would waot to generate an- but the second came close to
in the range 1 to 12, corre- other random number before undoing the entire project.
spondiog to each town; going on - so if the procedure Were I to start again the entire
3. check if the town has GE NRA ND does not come top-down design of the struc-
already been removed from up with the goods it has to ture of the software would be
the town data structure; call itself to try again. I had clifferent - an almost inevita-
4. if it has been removed keep finally arrived at recursion. ble position in computing
generating a random number Harvey, McDougall, and when starting to develop the
until I get one which is in the Haigh had much to say on solution to a compleit prob-
structure; recursion, in fact Harvey so !em from a knowledge base of
5. now that we're using the much that I thought of over- zero!
number get rid of it from the kill!
town structure so it won't be My instructions were put in
used again; 4. I found that [could check place with SETPOS and
6. call the appropriate town for membership of a list in LABEL.
procedure, depending on the IBM Logo with MEMBER?
number; aod if the number wasn't The AEADCHAR keyword
7. assign the correct answer to there I would call was what I would need to get
the town; this will be a letter GENRAND recursively. the user input There were to
of the alphabet which the user be two possibilities. If the
must press. 5. The first attempt I made to entry was correct the user

solve the removal problem would be congratulated and
My solutions to these prob- made me realise that this was the procedure which called
!ems were as follows: complex and so I decided to the USERTRY procedure

helve the problem. I would would be called to start the
1. Harvey (1988) and get the rest of the software cycle over again from the
McDougall (1982) put me on working, accepting repeats of beginning. So the procedure
to the LIST data structure. So the same town, before return- which called the procedure
I will need to initialise a list ing to the problem of strip- would in tum be called by the
which I call "ALLNOS" ping out towns once they had procedure it called! I'm very
containing the numbers Oto been used. deep into Hofstadter (1979)
11. I wiJI need to ask ques- here with a fair measure of
tions of this list, for example 6 & 7. Now a whole series of Lewis Carroll and a splash of
it it empty? The IF structure assignments were necessary Russell's Paradox - can I
coupled with the handy to call procedures to display a come out the other side!
EMPTY? offered the promise town's shape and to assign
of success. correct answers. Some false The second case is when the

starts made it important to users give the wrong re-
2. Random number generation sort out assigning with the " sponse. Then we give them
turned out to be easy: operator and inspecting the another go by caning the
RANDOM 12 gave me a value of variables with the : USERTRY procedure
number in the range 0 to I I operator. recursively. IFELSE will
and when 0 is generated I solve the technical problem of
convert it to I 2 to get my Now I needed to give the user choice.
town list I - 12. a simple instruction on what

to do, and then get his or her Now to put it all together
3. However, thinking ahead, if response. will drive the software pack-
a town has been selected age by a procedure called
already it will have been The first problem was, as MAIN which will call each of

the other necessary procedures until all of the
towns have been correctly identified.

At this stage I carried out testing, both myself
and with Year 7 students, and all worked well
except that we were not stripping out towns. So
now I can postpone no longer returning to the
list processing problem!

This session was actually spread over quite a
number of days. The purpose of the strip proce-
dure is to search through the town Ii t until it
comes to the one we're after; then it needs to
return a new list with that one removed. In this
way, as we cycle through the software, the list is
gradually reduced until we've identified all of
the towns.

It took quite a few attempts using FIRST,
BUTFIRST, SENTENCE, IFELSE and a
temporary list before we had a working model.

STRIP is the heart of the software and the most
complex and compact of the procedures. It is a
tail recursive procedure which searches through
the list using FIRST until it finds the number
we're after. Meanwhile, numbers already
looked at are stored in a temporary list.

When found, the number is discarded from our
now depleted list, which is then restored to the
position it should be in by the addition of the
members of the temporary list.

So, for example, we're after 5 . ..

lllebal..._ 1012,,s,11, 10111

I\
telllfllbl: (Oil HI (671910111 :allnt111

\LlF/
an.a.: 1012J'67191011)

- II

... and we're ready to go again with the
new list ALLNOS!

TO FROGBAK6
CT
CG
HT
CLEARNAMES
CLEARTOOLS
MAKE "ALLNOS [O 123 4 5 6 7 8 9 10

11]
MAKE "TEMPLIST 0
TITLES
MAIN
END

TO MAIN
FROGMAP
TOWNLIST
INSTRUCT
GENRAND
USERTRY
END

TO TITLES
SETPOS (-70 30]
LABEL [TOWNS IN FRANCE]
TONE 294 2 WAIT 1
TONE 294 1 WAIT 1
TONE 392 8 WAIT 1
TONE 392 8 WAIT 1
TONE 440 8 WAIT 1
TONE 440 8 WAIT 1
TONE 587 12 WAIT 1
TONE 494 3 WAIT 1
TONE 392 8 WAIT 1
HOME
WAIT50
CG
END

TO FROGMAP
SETPOS [64 80)
PD
SETPOS (76 72) SETPOS (84 64)
SETPOS (96 56) SETPOS [108 46]
SETPOS (120 40] SETPOS [136 34]
SETPOS [144 32] SETPOS (140 16]
SETPOS (131 4] SETflOS [115-4)
SET.PCS (101 -14] SETPOS [102 -22)
SETPOS (112-16] SETPOS [116-28)
SETPOS (111 -44] SETPOS (112 -56)
SETPOS [121 -64] SETPOS (109 -71)

SETPOS (95 -77) SETPOS (87 ·84]
SETPOS [TT -75) SETPOS (62 -69]
SETPOS (44 -73) SETPOS [36 -81]
SETPOS (34 -85) SETPOS [22 -83]
SETPOS (10 -86) SETPOS [-2-88)
SETPOS (-6 -81) SETPOS [-20-85]
SETPOS [-34 -77] SETPOS [-45 -69]
SETPOS [-51 -61] SETPOS (-44 -49]
SETPOS [-40-37] SETPOS (-34-26]
SETPOS [-32-16] SETPOS (-32 4]
SETPOS [·38 18] SETPOS [-43 26]
SETPOS (-54 29) SETPOS (-54 35]
SETPOS (-54 39) SETPOS (-48 41]
SETPOS [-34 45) SETPOS (-22 37]
SETPOS (-14 39) SETPOS (-10 56]
SETPOS [0 59] SETPOS [9 49]
SETPOS (21 53] SETPOS [31 59)
SETPOS (41 64] SETPOS (47 76]
SETPOS (64 80]
PU
SETPOS[0 OJ
PD SETC 1 PU
END

TOTOWNLIST
PRINT"
PRINT"
PRINT"
PRINT"
PRINT "A ... BREST
PRINT "B ... BORDEAUX
PRINT "C ... AVIGNON
PRINT "D ... NICE
PRINT"
PRINT "E ... PARIS
PRINT "F ... L YON
PRINT "G ... LILLE
PRINT "H ... TOULOUSE
PRINT"
PRINT "I ... STRASBOURG
PRINT "J ... MARSEILLE
PRINT "K ... NANTES
PRINT "L ... GRENOBLE
END

TOGENRAND
IF EMPTY? "ALLNOS [STOP]
MAKE "TOWN RANDOM 12
IF NOT MEMBER? :TOWN :ALLNOS

[GENRAND]

IF MEMBER? :TOWN :AUNOS [STRIP]
IF :TOWN = 0 [MAKE "TOWN 12]
IF :TOWN = 1 [PARIS]
IF :TOWN = 2 [LILLE]
IF :TOWN = 3 [STRASBOURG]
IF :TOWN = 4 [BRESTI
IF :TOWN = 5 [NANTES]
IF :TOWN = 6 [BORDEAUX]
IF :TOWN = 7 [LYON]
IF :TOWN= 8 [AVIGNON]
IF :TOWN = 9 [GRENOBLE]
IF :TOWN= 10 [NICE]
IF :TOWN = 11 [MARSEIUE]
IF :TOWN= 12 [TOULOUSE)
IF :TOWN = 1 [MAKE "ANS 'E)
IF :TOWN = 2 [MAKE "ANS 'G)
IF :TOWN = 3 [MAKE "ANS "I)
IF :TOWN = 4 [MAKE "ANS "A]
IF :TOWN = 5 [MAKE "ANS "K]
IF :TOWN = 6 [MAKE "ANS 'BJ
IF :TOWN = 7 [MAKE "ANS 'F)
IF :TOWN = 8 [MAKE "ANS 'CJ
IF :TOWN = 9 [MAKE "ANS 'L]
IF :TOWN= 10 [MAKE "ANS "DJ
IF :TOWN= 11 [MAKE "ANS "J]
IF :TOWN= 12 [MAKE "ANS "HJ
END

TO STRIP
IFELSE :TOWN = FIRST :ALLNOS [MAKE

"ALLNOS SE BUTFIRST :ALLNOS
:TEMPLIST MAKE "TEMPLIST O STOP)
[MAKE "TEMPLIST SE :TEMPLIST FIRST
:ALLNOS MAKE "ALLNOS BUTFIRST
:ALLNOS STRIP]

END

TO INSTRUCT
SETPOS [-140 90)
LABEL [ENTER THE LETTER OF THE

FLASHING TOWN]
END

TO USERTRY
SETPOS (0 OJ LABEL [
SETPOS [-23 20] LABEL []
IFELSE READCHAR = :ANS [SETPOS (0

OJ LABEL "EXCELLENTIII WAIT 20
LABEL "EXCELLENTIII MAIN] [SETPOS
[-23 20) LABEL [HAVE ANOTHER GOii!]

WAIT 20 LABEL [HAVE ANOTHER GOii!)
USERTRY]

END

TO PARIS
SETSH 1
PU
REPEAT 3 [ST SETPOS (60 28) WAIT 10

HT HOME WAIT 1 OJ
HT
END

TO LILLE
SETSH2
PU e
REPEAT 3 [ST SETPOS [76 62J WAIT 10

HT HOME WAIT 1 OJ
HT
END

TO STRASBOURG
SETSH3
PU
REPEAT 3 [ST SETPOS (130 20) WAIT 10
HT HOME WAIT 10)

HT
END

TO BREST
SETSH4
PU II
REPEAT 3 [ST SETPOS (-50 35) WAIT 10
HT HOME WAIT 10J

HT
END

TO NANTES
SETSHS
PU
REPEAT 3 [ST SETPOS [-25 6J WAIT 10
HT HOME WAIT 10J

HT
END

TO BORDEAUX
SETSH 6
PU
REPEAT 3 [ST SETPOS [-25 -30J WAIT 10
HT HOME WAIT 10)

HT
END

TO LYON
SETSH7
PU
REPEAT 3 [ST SETPOS [75 -25) WAIT
10 HT HOME WAIT 10)

HT
END

TO AVIGNON
SETSH8
PU
REPEAT 3 [ST SETPOS [60-40) WAIT
10 HT HOME WAIT 10)

HT
END

TO GRENOBLE
SETSH 9
PU
REPEAT 3 [ST SETPOS [100 -35) WAIT
10 HT HOME WAIT 10)

HT
END

TO NICE
SETSH 10
P·U
REPEAT 3 [ST SETPOS [114 -60) WAIT
10 HT HOME WAIT 10)

HT
END

TO MARSEILLE
SETSH 11
PU
REPEAT 3 [ST SETPOS [75-70) WAIT
10 HT HOME WAIT 10)

HT
END

TO TOULOUSE
SETSH 12
PU
REPEAT 3 [ST SETPOS [-12-6BJ WAIT
10 HT HOME WAIT 1 OJ

HT"
END

EHTER THE.LETTER OF THE FLASHING TOUH

A ... BREST
B ... BORDEAUX
C ... AUIGNOl'I
0 ... NICE

E ... PARIS
F ... LYON
G ... LILLE
H ... TOULOUSE

I ... STRASBOURG
J ... MARSE I LLE
K ... NANTES
L ... GRENOBLE

EHTER THE LETTER OF THE FLASHING TOWN

A ... BREST
B ... BORDEAUX
C ... AVIGNON
0 ... NICE

E ... PARIS
F ... LYON
G ... LILLE
H ... TOULOUSE

I ... STRASBOURG
J ... MARSEILLE
K ... NANTES
L ... GRENOBLE

I will need to redesign the structure of the "Towns in France" software now that I am more
confident in the language. In particular I will localise data structures and pass them between
procedures, and re-examine the recursion which slows the program down noticeably as the town
data structure becomes depleted.

It's a great pity, but the IBM version is poor compared with the Macintosh and pathetic when
measured against Micro Worlds Project Maker.

The obvious geometric and general mathematical advantages of Logo appeal; and I think that the
most significant insight for me from the whole exercise is that now I can see bow to take these
powerful mathematical tools and incorporate them into game style applications which in turn can
be Jinked into database applications.

