
PORLL
A journal for Logo Users

State(]

Turing Machines,............... 11\ .. t--.... ...
.... _ \ ...
r.~.,.... ·~""...,..
................... "' .. ~,_ ,...... ... _ ...

Volume 2 No 2~ Apri 1 I 987

The unthinkable has happened; PCMLL contains a BASIC prOJram. When you see it you'll
understand why.

A certain bureacracy has moved me "J13in. I'm now at Salisbury High School.

The E -Mail age has arrived at POOL Three articles in this Issue have arrived,
courtesy of the Red Ryder on the Mac, vie the Megill VAX. If you have access to that machine,
mail your contribution to CARTER, and for Nexus users, the crl:lress is PCARTER.

ACEC '87 is fast approaching, and the various committees will soon be editing the papers
and preparing them for the proceedings. The lcg:> papers we know about are listed on p I 8. Will
be an exciting lime.

Theme article for this Issue Is another In the Computing Science series. Special thanks
to the contributors to this issue.

POTS

2 luring Mochines
7 Resources
9 TLC-lcg:> for the CommOO:lreAmiga

12 Thinking Lcg:>
13 Froctals- LQ9J Style

15 Scissors
16 Computing et Entropy House
18 Research LQ9J Re-reviewed
19 What can 1 oo?

POALL Vol2 No 2 2

Turing Machines:

Alan Turing (1912 .. 1954) was a brilliant, but tragic, figure in the history of
computing. During the war he was a key member of the team at B letchley Park that decoded
German communications, securely encrypted, so the German High Command believed, by the
Enigma machines. The full extent of the work at Bletchley Park has never been revealed, but it
was to lead to the OO'Ielopment of Colossus, arguably the world's first, if specialised, electronic
computer*. Had the En1gma cooes not been brol<en the world would almost certainly be a very
different place today.

In 1936 Turing published a paper, 'On Computable Numbers ... ' That paper defined the
limits of computability, what computers could and could not oo. He made use of a theoretical
machine, the 'Turing machine', which he did not propose to build, but used as an example of
logical reasoning. It stands as a mcx:lel of all mcx:lern computers.

A Turing machine consists of a device to read from and print on a paper tape marked
with 1 s and Os. It can move along the tape, reading and printing one character at a time
according to the rules incorporated into its mechanism. The rules OOscribe the 'states' the
machine is to OO:Jpt as it moves to and fro along its tape.

As John Hopcroft says, 'The best W$1 to understand how a Turing machine works Is to
try to build one.' Rather then assemble cogs and things, ell we need to 00 is specify the rules
needed to perform some action. For example, let's make a machine to crl1 two numbers, 2 and 3,
which will be represented on the tape by 000110111000. We'll start the machine with its
read/print head over the leftmost I, and in what we'll call state I. The easiest W$1 to oo it is for
the machine to move the II string (JJainst the Ill across the 0, moving only one step at a time.
To oo that we'll let the machine move to the right until it comes to the first I in 11 (a in the
diagram below). It changes the I into a 0, changes itself to state 2 and moves to the right. In
state 2 it takes no notice of any Is it finds (b) but moves right. When it finds a 0 it changes it to
a 1, enters stage 3 and stops (c and d). The final result on the tape is 000011111 000.

State: [!]

a

State: 0 State: 0

* Contrary to what some books may suggest, Colossus was not used on Enigma codes but on messages
encoded by Geheimschreiber, a modified teleprinter with 10 encoding rotors. Enigma lives on in the
crypt command of the UNIX operating system. As the manual slates: 'Crypt implements a one-rotor
machine designed on the lines of the German Enigma, but with a 256-element rotor. Methods of
attack on such machines are known, but not widely; moreover the amount of work. is likely to be
large.' It was. Some 10 000 people worked on the decoding task for the six years of the war.

POALL Vo12 No 2 3

The rules built into 8 Turing mm;hine must either aruse it to stop or specify three
things: what it must print on the tape, the state it must assume, and whether it is to move to left
or right. The rules for our f1rst maj]1ne are these:

State Symbol Print New State Movement

1 0 0 1 R
1 1 0 2 R
2 0 1 3 R
2 1 1 2 R
3 0 Stop
3 I Stop

Rules ltke that can be expressed tn Lo;p as well as a table like that, but before we try
we'll need to decide a couple of things. Our tape will be in the form of a word, a free variable.
The machine's position on the tape wm also be a free variable, and the two wm be free because
the machine 'knows' nothing of the rest of the tape or its position. The only things represented
in it are its state and the rules. We will need some W8f of reaiing the tape, printing on it and
moving the m~htne. On the screen we·n represent the tape by simply printing tt and the
machine by printing its state above the 'tape'. That leeds tot~ pracedures (Note that this is
nola real, but an idealised l~:g:~. You will need to make changes, especially to the IF .. THEN .. ELSE
line In Move):

TO ReadTape
OUTPUT ITEM :position :tape
END

TO Put :symbol
SETCURSOR SE :position * 2 6
TYPE :symbol
MAKE .. tape RepJEK:e :position :symbol :tape
END

TO ReplEK:e :position :symbol :tape
IF EMPTY? :tape [OUTPUT"]
IF 1 • :position [OUTPUT WORD :symbol BUTFIRST :lope]
OUTPUT WORD FIRST :tape ReplEK:e :position - I :symbol BUTFIRST :tape
END

TO Move :direction :state
SETCURSOR SE :position * 2 5
REPEAT 2 [TYPE CHAR 32]
IF :direction= "R

[MAKE "position :position + 1]
[MAKE "position :position- 11

SETCURSOR SE :pos1tlon * 2 5
TYPE :state
END

Now, let's pseLJOOOcode the machine itself:

retKI/he ttJpe
if the state is I 8fJd the symbol is 0, then print 0, assume state I 8fJd mOYe right
If the state is I 8fJd the symbol is I, then print 0, IJSSI/me state 2 8f1d mOYe right
if the state is 2 8fJd the symbol is o, then print I, IJSStlme state 3 8fJd stop
if the slate is 2 8lld the symbol is I, then print/, assume slate 2 8fJd move right

PMLL Vo12 No 2 4

As you may gother from that, the lop could be lines of If AND ... I HENs, but if we oo
that we will eventually have very large, cumbersome procedures. Instead, we'II!Jl this way ...

TO Mochine :5tote :rule5
LOCAL [symbol instructions]
MAKE "symbol RIBJTape
MAKE "instructions lookUp SENTENCE :state :symbol :rules
IF EMPTY? :instructions [Halt STOP]
Put FIRST :instructions
Move FIRST BUTFIRST :instructions LAST :instructions
Machine LAST :Instructions :rules
END

TO lookUp :conditions :rules
IF :conditions • FIRST FIRST :rules [OUTPUT LAST FIRST :rules
lookUp :conditions BUTFIRST :rules
END

... with the rules as a Hst:

MAKE"rulesl [[[t O][OR t]][[t t][OR2]][(20][t R3]][[2 t][t R2]][3 t][]]]

The first sub list in each subJist, eg. [2 0), is the state and symbol read, the second, [1 R 3] is
the symbol to be printed, the direction to move, and the new state. A[] fs the signal to halt.

To make life easier we could oo with a couple more procedures, and a,. represents a
space to be printed:

TO Halt
SET CURSOR [0 1 0]
PRINT "Finished
END

TO Setup
LOCAL ·state
CLEAR TEXT
PRINT [Turing M~ine]
SETCURSOR [0 15]
TYPE [Enter the tape:\,.)
MAKE "tape READWORD
PRINT"
TYPE [Enter the starting position:\,.]
MAKE "position READWORD
PRINT"
TYPE [Enter the initial m~ine state:\,.]
MAKE "state READWORD
PRINT"
TYPE [Which m~ine?\,.]
Stm-t READWORD :state
END

TO Start :machine :state
SETCURSOR SE :position * 2 5
PRINT :state
SETCURSOR [2 6]
PrintTape :tape
Mtdline :state THING WORD "rules :mtdline
END

TO PrintTape :tape
If EMPTY? :tape [STOP J
TYPE WORD FIRST :tape CHAR 32
PrintTape BUTFIRST :tape
END

PMLL Vol2 No 2 5

Try it first with the values given in the example earlier, 0001 I 0 I l 1000 for the tape,
4 for the j)osition and 1 for the state, then with other tapes. Try starting on one of the leading Os
and see tf that makes any difference.

MUng two numbers li~e that may not be the most exciting so let's try something more
complex. This time we'll start with a tape like thts:

00111110100010

N p

end copy the 1 1 1 ocross to finish with 0011101110. The 1 1 1 on the left we'll consider es
being in a register named N, the result wiJJ be in register P, and the 0 in the miti:ile is :the
break between them. Here are the rules:

State Symbol Print New State Movement Comment

1 0 0 1 R Move to left end of N
1 1 0 2 R Mark left end of #with 0
2 0 0 3 R Move~break

2 1 1 2 R Move across N to break
3 0 1 4 l COpy 1 at right end of P
3 1 1 3 R Move past 1 s in P
4 0 0 5 l Move left fD'OSS break
4 1 1 4 l Move left across P
5 0 1 8 l 0 to left of break shows copying comp tete
5 I 1 6 l Move left from break Into N, change state
6 0 1 7 R Begin move of 0 morker to right
6 1 1 6 l Move left across N
7 0 Doesn't happen In this m~ine
7 1 0 2 R Complete move of 0 to right
8 0 0 finished
8 1 1 8 l Move left to end of N

Let's put that into lo;J) {Use EDN. You'll probably find tt easter to type it like thfs and
then remove the <Return>s):

MAKE "rules2 [[[1 OJ[O R 1]][[1 1][0 R 2]]
[[2 OJ[O R 3]] [[2 t)[1 R 2]]
[[3 O][1 L 411 [[3 I][I R 3]]
[[4 OJ[0 l 5]) [[4 1)[I L 411
[[S OJ[1l8]] [[S 1][1l6]]
[[6 OJ[ll6]] [[6 1][1l6]]
[[7 1][0 R 2]][[8 1][1L8]]
[[8 OJ[]]]

Try it with tapes like the one earlier and watch the machine shuttle forth and back. It
talces 30 moves with that tape, starting at position 1 in state I.

let's now build on that machine to produce one that multiplies two numbers on tapes like
thiS:

Oil 1IOI111IOIOOOOOOIO
.............................. ~

11 N p

POALL Vol2 No 2 6

The Ill is in N as before, the II is in 11 and the answer will appear in P. A couple of rules
are slightly changed, the rest are simply acXIed to the last set, and no, there isn't a state 9. The
machine will wor~ by copying, which Is why It Incorporates the copying machine, and you can
begin at position I in state I 0:

State Symbol Print New State Movement Comment

8 0 0 12 L Move left between 11 and N
8 l I 8 L Move to left end of N

10 0 0 10 R Move to left end of /1
10 1 0 11 R Mar~ left of t1 with 0
II 0 0 I R Begin copy
11 1 1 11 R Move across t1 to break:
12 0 1 15 L 0 found to left of brea~ between

11 and N, product in P
12 1 13 L Move into /"!,must change state
13 0 14 R Begin move of 0 marker in N
13 1 13 R Contine across tt
14 0 Dresn't occur
14 1 0 11 R Move 0 inN
15 0 Finished
15 1 15 l Move to left end of tt

MAKE "rules3 [[[1 O][O R 1]] etc ...

You may think all that is a very complicated set of rules just to multiply two numbers,
and you·re probably right. But that is how 817Y computer works, one tiny binary step at a time,
and we can define Turing machines to oo anything that can be oone by computers. The Turing
machine is a model of all computers; a modern computer is a 'universal' Turing machine, with
its memory taking the ploce of the tape and a pr(XJram the rules.

The point of Turing's paper was that he was able to prove that any mathematical function
was computable if it could be computed by some Turing machine, in other words by some
specified set of logical steps, an algorithm. To understand why that was important you need to
know about the work of Russell and Whitehead, GOOel, Church and others in the early part of the
century. That's beyond us here, but it lies at the base of much of what we oo in computing. like
George Boole, Alan Turing gave us a logical foundation.

You will find Turing machines mentioned in many places, one being Chapter 2 of
Weizenbaum's Computer Pc1wer and Human RtJilSOIJ, but unfortunately the example he gives
doesn't work. The examples here came from 'Turing Machines' by J. E. Hopcroft in Scie.ntitic
Amen£":811, May 1984, which explains the mathematics in depth. J. David Bolter describes
them in Turing's Nan. along with many of the implications of computing. The best r.Jescr iption of
Enigma and the work of the British Code and Cypher School is in B. Johnson's Tile .. '>dret It~
The biography of Turing, A/817 Turing: The Em_i]rna by A. HOO];s covers the whole field in detail.
You will almost certainly come across reference to the 'Turing Test' in your reading, but that's
another story ...

POALL Vol 2 No 2 7

Resources:

The second of Brian Harvey's Computer Science LO{JJ Style series is now available,
subtitled Projects, Styles, ond Techniques It lt:esn't really need reviewing, simply
recommending to everyone using Logo in secondary or higher education or interested in learning
more about and with L(Q).

Layout and style follow those of the first book, and as the title suggests, this volume is
concerned wtth pr()Jrammlng styles and planning methods, explained within the contexts of the
ten projects in the book. There are five sections, dealing with cryptOJraphy, games,
mathematics, utilities and pattern matching. The games described are solitaire and tic-tac-toe,
the maths includes Fourier analysis (for musicians) and the utilities include an iteration
compiler. This one takes a program written with mapping and modifies it to tail recursive form.
To fllustrate pattern matching there Is a version of DOCTOR, but unlike the simplistic one in
Abelson's Apple LOflJ this one uses a two tier structure like Weizenbaum's original. Complete
listings are in the book, but the programs are available on disk for users of Apple LOIJ) I I, IBM
Logo and Macintosh Logo.

Volume 3 should be available some time this year, but Volume 2 has plenty to keep you
busy until it arrives. Mentioned by Harvey is LCVJWorks: Cllo/!enging Prf:Kdroms in LOflJ by
Cynthia Solomon, Margaret Minsky and Brian Harvey (McGraw-Hill, 1985). Australian price
ls quoted as $67, and we haven't taken the plunge yet (Harvey's book Is 11sted at $48.50). On
order is Cynthia Solomon's book Computer Environments for Children: A reflection on Theories
ofLearningandEducation (MIT Press, 1986). Will be reviewed when it arrives.

Logo rates only a minor comment in Prf:Kdrammersat Work, a book of interviews edited
by Susan Lammers and published by Microsoft Press. Nineteen pro;Jrammers describe their
styles, their personalities and something of their methods.

Gary Kildall has this to say about problem solving:

'Parl of the programming process is general problem solving. How do you solve a problem
that's complex, whether It's designing a computer program or constructing a building? You start at the
poinl where you think it's too hard to solve, and then you break il down inlo smaller pieces. That's
what I try to teach.' (p 58)

B tJJ Gates, who admits to having gone 'to the garb<Q3 cans at the Computer Science centre
and I fished out listings of their operating system' to find !pJd examples of programming, is also
strong on the thinking process:

'Before I sit down to code something, most of the ii)'Strudioos hiM: e\ready roo lliroog\'1 my
head. It's not all laid out perfectly, and I do find myself making changes, but all the good ideas have
occurred to me before I actually wrile the program. And if there is a bug in the thing. I feel pretty bad,
because if there's one bug, it says your mental simulation is imperfect. And once your mental
simulation is imperfect, there mighl be thousands of bugs in the program. I really hate il when I watch
some people program and I don't see them thinking.' (p 77)

That last sentence is the important one. Logo can be successfully cb:xiled with, without
everything having run through one's head beforehand. But the thinking process is vital.
Perhaps the most fortright words come from Butler Lampson:

'To hell with computer literacy. It's absolutely ridiculous. Study mathematics. learn to think.
Read. Write. These things are of more enduring value. learn how to prove theorems: A lot of evidence
has accumulated over the centuries that suggests this skill is transferable to may other things. To
study only BASIC programming is absurd.' (p 38)

-
Logo is as good a medium for learning mathematics and proving theorems as anything. A

very Interesting book.

POALL Vol 2 No 2 8

Another non-Lcxp book is 11icrcmip by T. R. Reid and published by Pan. Reid writes
for the Washington Post and his book reads well, even if a couple of minor points are doubtful.
It's a history of the developments, Including the litigations and technical retails, of Integrated
circuitry. There ere some good ideas on the problem solving process, especielly from Jock
Kilby:

' ... Somewhat simplified the method involves two levels of concentrated thought.
At first, the problem solver has to look things over with a wide-angle lens. hunting down

every fact that might conceivably be related to some kind of solution. This involves extensive reading,
including the obvious technical literature but also a broad range of other publications... "That's all
right." Kilby says, •you read everything-that's part of the job. You accumulate all this trivia, and you
hope that someday maybe a millionth of It will be useful." For recreation, Kilby says, "I read trash."

The next step in Kilby's system requires switching to an extremely narrow focus, thinking
strictly about the problem and tuning out the rest of the world. This requires, first or all, an accurate
definition of the problem. •The definition of the problem becomes a major part of the innovation,"
Kilby has written. "A lot of solutions fail,· he says, "because they're solving the wrong problem, and
nobody realises that unlit the patent is filed and they've built the thing." It is also necessary to develop
a clear understanding of the natural constraints surrounding the problem; the heart of the inventor's job
is finding a way to slip past the roadblocks erected by nature ...

In this concentrated, single-minded focus on the question at hand, the problem solver must also
tune out all the obvious solutions. This is a key principle, important to emphasize because it is
somewhat counter-Intuitive. The mind tends to jump to the answer that Is Immediately evident. In
fact. this answer is probably wrong. If the problem is of any importance, all the obvious solutions have
been tried already ... Some of history's most important innovations. he says, were so nonobvious as to
violate the scientific rules of the day. "You only arrived at the invention when somebody developed a
method that everyone else had already decided was obviously wrong.·· (pp 56 .. 57)

Traditionally, l()J) has always hoo something of a mathematical bias. Seymour Papert
on LO[PWriter:

• ... Many teachers who feel more comfortable dealing with domains that focus on verbal or
dramatic content rather than on mathematical concepts will now have access to the logo culture. My
second remark anticipates the Inevitable question: 'But will this skill or making LogoWriter
presentations transfer to increased writing skills in general?' My answer is simple. If you see
transfer as an automatic process that needs no encouragement from you, It may or may not. But I am
convinced that your imagination as a teacher will show you how to use logoWriler programming as a
transition to pure writing: (Snarfed from sltimes. who snarfed It from Classroom Computer
Learning.) ..

If you're working in primery school with Apple or IBM, oo have elook et LOJ)Writer. A
Commod:lre 64 version is apparently on the way. It's an expensive pacl<age, but inclures site
licence, lots of excellent teaching Ideas and materials, and even 'tal<e home' licences.

For the musically inclined, Terrapin recently released Terrapin Music LOJ) for the
Apple. It can be used to compose music in six voices with normal lcxp procedures through an
ALF synthesizer with amplifier, and comes with comprehensive d:lcumentation. Terrapin have
also released the LOJ)Works"" support materials, with the first being LOJ)Works: Lessons in
LO[P and The LO[P Project 8tXJk: Exploring Wore& BfJd Lists More are on the wey.

I v.s~ ~to Wo..x -to kee...p
m~ ~WI ;; lea IYI ; vt9_

"

I

POALL Vo12 No 2 9

TLC-Logo Beta 1.-4 for the Commodore Amiga

A LQIJl is on the WfJY for the third of the 68000 micros, the Commocbre Amiga. The Mac
has had LCSI/Microsoft LQIJl and ExperLQIJl for some time, and the Atart ST machines have
DR LQIJl supplied with them.

TLC-LO!Jl Is, well, different, being based on a rather different mtx:EI of what LOJ) should
be, and it would be as well to consider LOIJ)'s ancestry for a moment. LOJ) derives from LISP,
the language of artiflcial intelligence for nigh on 30 years, but its resigners changed a few
things along the Wf!Y, mainly to remove the parentheses. Where LISP would Sf!Y
(Thingo I 2 3) LQIJl has Thingo I 2 3. Likewise, (Thingo (Wotsit 5 6) 7 8)
becomes Th I ngo Wotslt 5 6 7 8. The LQIJl looks easier without (the ()) but the prob I em
comes with expressions like (Thingo I 2 size) which cannot be represented os
Thingo I 2 size. That word size is not the name of a procedure, it is a variable, so to
distinguish It,: (dots), as In :size. (Dots has a meaning, It's not just a convenient label. :size Is
shorthand for THING "size, in other words, 'return the value bound to the word size'.)

So far so g:xxl, but in the opinion of John Allen, president of The LISP Company that
makes TLC-LO}J, there were some liberties taken. LISP is functional, that is, every module of
core returns a value, even if it Is only nil or t. The usual LQIJl is procedural, and for a value to
be returned it must be OUTPUT. To Allen that is a disadvantage, and TLC-LcqJ's major difference
from the Lo;J)S from LCSI, Terrapin etc. is that it is functional. Something of what this means in
practice will be seen from sample procedures later. Another significant difference is that every
function is a perfectly ordinary list; the TEXT operation of conventional LOiJlS is unnecessary.

TLC-LOJ) Preliminary Version Beta 1. 4 for the Amiga came with 12 badly photocopied
pages of documentation, simply a list of the primitives. No instructions on operating the
system. just the primitives, many of which behave somewhat unexpectedly. and not alWfJYS
consistently with what is in the book by John Allen and his colleagues, Thinking About /TLC}
Lq;v Understandably the team at Angle Park wasn't very impressed, especially as noone could
worl< out how to define procedures from the editor.

The list of primitives is interesting however, including ACT to activate multiprocessing,
CASE, which works like the Pascal one even if the syntax is different, FOR, an extended REPEAT,
MAP and MAPQ. There is COND, LISP's equivalent of IF .. THEN .. ELSE, and DO, something like
LOIJ)'s RUN. Many predicates tal<e the form ISEMPTY, JSFUN, ISM I NUS, ISTHING etc. A
potentially useful list mutating primitive is SET. TLC-Lpgo can HATCH multiple Turtles, the
default one being 'STUDS The original, inevitable, turtle'*, but 001ressing them is not a matter
of TELLing them as In other versions. The oofault shape is an odd oval, actually stretched{}, but
shapes can be redefined.

first attempts brought forth some interesting error messages, including this one:

Error: If doesn't lll<e nothing near polyspf

Just the thing to start an English lesson. Another, after a real crash:

Guru Meditation #QQ000005.0000A708

Now you know what system pr(JJrammers oo in their spare time.

* There is a play on words here. Studs is named afler Studs Turkel the sociologist.

case):

POALL Vo12 No 2 10

Eventually I got PolySpi to work (TLC-LorJJ is case insensitive, but defaults to lower

to polyspi :size :angle :inc
:size> 200
iffalse [fd :size rt :angle polyspi :size+ :inc :angle :inc]

end

Remember that every piece of code returns a value, so the line :size > 200 is equivalent to
TEST :size > 200 In the LI)J) you're used to. TLC-LI)J) does polyspt 1 123 1 In 8 little
over 3 seconds, or about 8.5 with Studs visible. MDClorJJ tDkes over 1-4 seconds.

There are some demonstrations on the disk. One of them draws a~ resemblance of
M. C. Escher's 1964 print 'Square Limit'. Another has a number of traditional fr~tal
graphics, including:

to hilbert :size :level filfn filgn
:level= 0
iffalse [fn 90 hilbert :size: level - 1 @gn @fn fd :size gn 90 hilbert :size

:level- 1 @fn @gn fd :size hilbert :size :level- 1 @fn @gn gn 90 fd :size
hilbert :size :level- 1 <flgn <flfn fn 90]
end

Two things about thDt. The cpxt thing is tMt functions can be easily passed as arguments (the
filfn business). The bad thing is that the formatting of functions is absolutely abominable, and
nothing like what Is shown In Thlnk/1/fJ About {TLC} Lqp, or possible In any LISP system.
Without knowing how the editor works it's impossible even to enter a function like thot; when
the cursor res:hes the edge of the screen that's it. Something that really does need attention
before final release.

forms:
I was determined to get a list processing function to work. one I often use in various

TO Remove :item :object
IF EMPTY? :object [OUTPUT[)]
IF :item = FIRST :object [OUTPUT Remove :item BUTFIRST :object]
OUTPUT SE FIRST :object Remove :item BUTFIRST :object
END

That's best mne with COND in TLC-L~. but I had to Dbbreviate to put it all on one line:

to r :1 :o
cond [[isempty :o []][:i = first :o r :i bf :o][•true fput first :o bf ~o]]

end

Yul<! This would have been more like it:

(de remove (item object)
(cond ((nun object) nil)

((eq 1tem (car object)) (remove Item (cdr object)))
(t (cons (car object) (remove item (cdr object))))))

POALL Vo12 No 2 11

Besides being fast, TLC-LQI}J has more stack space than anything else around. This
function stopped with the very rescrlptlve message Error: error with :number at 4095:

to thingo :number
printnl :number
thingo :number +
printnl "#
end

The figure for MacLOJQ (oofault stack on 512k machine) is 1389, and for the disastrous
Atari ST LOIJI, 217. I wanted to try to find the maximum length of list that Remove, alias r,
could handle, but couldn't work out how to cons up long lists. SE and WORD oo rather different
things from standard l()J) versions.

The Amiga's winoows and mouse look superficially like the Mac's. Perhaps as a Mac user
I've been spoiled, but I found theAmiga system somewhat cumbersome. The colour in some of the
demonstrations was really g:xxi though.

A school can buy an Amiga for $1495 (512k, single drive, colour monitor), setf $2000
for machine and software. Will TLC-logo be worth having with it? I think it depends. For a
primary school 1 have my ooubts, and for high schools too, if recent experience Is any guide. One
of the problems with LQIJl has always been that it is harder for teachers than many other items
of software. Not every teacher has had the opportunity to spend hours and hours playing about
with lo;;JO or to be coached by someone with experience. TLC-lo;;JO is so different from other
l~ and the materials in books that most teachers are likely to have so many problems they
will give It away. That's unfortunate. because TLC-LCQJ isn't difficult. in fact some things are
easier, but there are all too few support materials, only Thinking about /TLC} Lqp at present.
Some will find its style a!J.]ravating, but the book is an excellent discourse on the philosophy of
L()J) in general and TLC-LQ9l in particular. I wouldn't be surprised if it forms part of the
system's cbcumentation.

Despite, perhaps because of, its differences, TLC-l()J) is a very powerful system, more
advanced in several aspects than the usual l()J), with vectors, streams, environments,
multiprocessing and the like. They are features needed for university level teaching and AI
research. This Logo's ploce may well be in tertil:~ry institutions where it can be supported by
people with LISP experience who understand and appreciate its power.

Without denigrating TLC-Logo in any way, for most Amiga users I think a conventional
LQIJJ would be better. Moc users have a choice and so do users of MS-DOS machines. Perhaps
Comm00ore might commission an Amiga LOIJI from Terrapin, who make Logo for the C 64.

My thanks to Ralph leonard and the team at Angle Park for the opportunity to try it.

The book:

Allen,J. etel T!JinkingAbout/TLC}Log; Holt,RinehartandWinston, 1984

(Reviewed in the first issue of P04LL)

The manufacturers:

The LISP Company 430 Monterey Ave. #4 los Gatos California 95030

(As the name suggests, they supply (highly regarded) LISP systems.)

POALL Vol 2 No 2

Thinking Logo by Peter J Carter

Reviewed and strongly recommended by Hartley Hyde

12

ThinKing Lqp is a book which follows more closely than most the LC9J path to
educat1onal growth wh1ch was f1rst v1sualised by Papert (t'!fndstt.rms. 1980). Wh11e reference
is made to useful techniques, the book is one which encourages the reader to think, rather than
learn to pr(X]ram.

During the last five years I have collected a scrap book of logo teaching ideas; photostats
of magazine artlcles and serviettes borrowed from dinner tables at which the conversation had
turned lightly to a discussion of LC9J procedures. After reading Carter's new book, I now foce a
major spring cleaning task, whereby most of this material can be discarded. Thinking Logo
provides an encyclopaedic coverage of the topic. Whereas most text boo~s agonise through the
traditional turtle graphics chapters and then give possing reference to just a few of the more
interesting aspects of the language, carter has not only collected all of these concepts into one
volume, but he has also woven them Into a clear, logical educational treatise.

carter is currently listed by the prestigious user group magazine Coli AP.P.L.£ as one
of only two Logo consultants in the world. He is a child of the Logo universe: but his expertise
goes largely untapped in our community. The wismm expressed in St. Lu~e 4: 24 continues
through the ages. carter's contribution is seriously underestimated by South Australians. We
should compare the high quality of Peter's articles in this magezine with those of more glossy
overseas publications.

Yes, criticisms will be made. Because the book is encyclopaedic, teachers who wish to
promote a partlcular narrow view of education through LOJ), will be frustrated by the variety of
different paths which carter pursues. For example, those who might examine the book as a
Computer Studies text will find much useful information, but they will also find many sound
educational practices which fall outside the narrow view Imposed by the intellectual disipline of
that subject. In some wcrys, Carter has used this book to preach a message guiding us back
toward the Papert concept, awcry from those who would limit our use of the language to a
particular and narrow purpose.

Finally, readers of this magazine will understand, but others should be warned, that the
Carter concept of wit is unique: it should be aquired slowly or it may hinder communication.
Who else would reference a book in its own Bibliography as:

An amorphous and idiosyncratic book for students to
learn programming through LOJ), with a self-referential
bibliographical entry.

Thinking Logo

An Introduction to (the Universe through} Programming

Avatlable mid-Aprtl $9.00 plus postaga

POALL Vo12 No 2 13

FractalS - Logo styte

David 0. Curtis, SACAE Magill

The alt~hed BASIC listing was published in tnline (1 J recently. It surely is a case of
using an inappropriate tool to m a job. The program attempts to simulate recursion in a
language which was not mveloped to support it and which 00es not support local variables. It
Iiles this by creating and manipulating string variables. How g:xxi a simulation it is is not
being mbated here, although it is an· interesting programming exercise. It is however
tnstructtve to compare the 11sttng w1th a patr of LO'}l procedures that oo the same job.

Inspection of the c00e presented in the two langu~ reveals that the LOI;Jl procedures
are much more comp~ and are I believe more relliable. Relliability of c::aE is very important,
especially in education, where programs are a means of communicating programming ideas
w1th stud:lnts and peers as well as communtcattng commands to a machine.

The BASIC listing is written for a Microbee using MicroWor ld BASIC which is one of
the versions of that language supplled with the machine. Variable names are a little d1fferent
from those used in other dialects in that integers are represented by single letter variable
names. reals are represented by a single letter followed by a number from 0 to 7. while
strings are represented as are reals except for the appended $ symbo1. Integers and reals may
not generally be freely mixed, hence the use of the Fl T and INT functions. The syntax of
string functions ts a lntle different from many other dialects. AO$(;M ,N) ts equivalent to
MIO$(AO$,M,N). Constants 511 and 255 reflect the 512 by 256 OOt resolution on the
graphics screen.

The variables used in the LO!J) procedures (:S, :l and :N) represent the number of
sides of the base fiQUre, the length of e8:h sioo of the base fioure and the number of levels
desired for the fiQUre.

Logo Procedures:

TO FRACTAL :S :l :N
If :N = 0 [REPEAT :S [FD :l RT 360/:S]]

[REPEAT :S [FO :li:S LT (180-360/:S) FRAC :S :l/2 :N-1
FD :l/:S RT 360/:S]]

END

TO fRAC :S :l :N
IF :N = 0 [REPEAT :S- t [FD :l/2 RT 360/:S] LT 180]

[REPEAT :S-1 [FD :li:S LT (180-360/:S) FRAC :S :l/2 :N-1
FD :l/:S RT 360/:S] l T 180]

END

BASIC listing:

00100 REM Fr~tal pr(WJ('am for the Mtcrobee
00110 REM Examples 3 N f, 3 N 2, 3 N 3, 3 Y 3, 3 Y 4
00 I 20 REM 4 Y 2, 4 Y 3, 5 Y 1
00130 BO$="":Al$='"':8 1$='"'
00140 C4=3. 1415927/180:M6=511 :M7=255
00 150 INPUT"Number of sides? ";S
00160 C6=M6*.7:C7=M7*.7:G=INT(C6):H=INT(M7-C7}+ 1
00170 JNPUT"Inverse? (Yes/No) ";10$:10$=10${; 1 , I)

..... continued

00 180 REM Angles to turn left and right
00190 R0=-360/FL T(S}:LO=RO+ 180

POALL Vo12 No 2 14

00200 IFIO$="Y" OR 10$="y" THEN LET CO$="A":WO=RO:RO=-LO:LO=-WO
ELSE LET CO$= MR ..

0021 0 AO$=CO$
00220 IFIO$<>"Y" AND 10$<>"y" THEN 290
00230 A 1 $="R": T =S-2
00240 FOR N• 1 TO T
00250 A l$=AI$+"l"
00260 NEXT N F roctol 3 80 1
00270 A 1 $=A I$+ "R"
00280 OOTO 340
00290AI$="L ":T•S-2
00300 FOR N= 1 TO T
00310 A I$=A 1 $+"R"
00320 NEXTN
00330AI$=AI$+"l" Fractal 3 80 2
00340 INPUT"Number of levels? ";J
00350 IFJ= I THEN 450
00360 REM Expand string for multiple levels
00370 FOR N=2 TOJ :K=LEN(AO$)
00380 FOR I= 1 TO K
00390 80$=80$ +AO$(; 1, I)+A 1$
00400 NEXT I
00410 A0$=60$:60$=""
00420 NEXT N
00430 REM Scale size of diagram to fit screen
00440 REM The factor (t. 49) has to be reduced for more complex figures
00450 li•M6*1.49/(FLT(S)*3"FLT(J))
00460 HIRES2
00470 FOR Z= I TO S
00480 FOR N= I TOLEN(AO$)
00490 6 1$=AO$(;N,N)+A1$
00500 FOR I= I TO lEN(B I$)
00510 BO$=BI $(;I ,1)
00520 IF 80$=-A" THEN lET VO=VO+WO:OOTO 540
00530 IF BO$="L" THEN LET VO=VO+LO ElSE lET VO=VO+RO
00540 A7=VO*C4
00550 XO=XO+l1*COS{A7):YO=YO+LI*SIN(A7)
00560 X=INT(XO):Y=INT(YO):D=X+INT(C6):E=INT(M7-Y0*.58-C7)
00570 PLOT G,H TO D,E
00580 6=D:H=E
00590 NEXT I
00600 NEXT N
00610 NEXT Z

Reference:

Maclachlan ,K.R. 'Fractal'. Online 28. p38. October, 1986

Edltor·s Comment:

I can't spealc for the BASIC, but the Lo;Jl version 00es work, as shown by the samples.
But are they real fractals? Compare them with the sample SnowFlakes elsewhere in this issue.
Why oo people still advocate BASIC in education?

POALL Vol 2 No 2 15

Scissors

More adaptations from the pages of Turtle6trJmetry

The usual Poly procedures, PolySpi, DuoPoly, MultiPoly, and all the rest, are based on
straight lines. That need not be. We can reploce eoch line segment w1th a scissors:

TO Scissor :distance :angle
RIGHT :angle
FORNRRD :distance
LEFT 2 • :angle
F(JUR) :distance
RIOHT :angle
81)

Now we can define a ScissorPoly, comp tete with stop rule:

TO ScissorPolv :distance :angle :phase : totaiTtrn :doneOne
IF fH) :donaOna 0 = REttRitiER : totaiTtrn 360 lSTOPJ
Scissor :distance :phase
LEFT :angle
ScissorPoly :distcn:e :angle :phase : totam.rn + :angle •Tfl£
81)

As you try it, think about how that stop rule works, and watch how the shape changes as
the phase changes. Think also about the symmetry and topology.

,\\~(/;/
ScissorPo l•J 60 156 90 360 "FALSE/

We could, instea:f of bending each segment, shrink it:

TO ShrinkPoly :distance :angle :local Phase : locaiPhaseChange
FORIIR) :distance * COS : local Phase
LEFT :angle
ShrinkPolv :distance :angle :local Phase + : locaiPhaseChange : locaiPhaseChange
81)

Segments disappem- when :local Phase = 90. Study how these shapes change with changing
:localPhaseChange, and invent a stop rule.

?0;><\ ~
VfJ~

ShrinkPoJy 60 72 30 45)

<:.._

POALL Vol 2 No 2 16

Computing at Entropy House

Just rxkllogo ond stir ...

SOmeth1ng of the functional style of TLC-LO!Jl and LISP can be seen elsewhere in -th1s
issue. It's not hard to get used to it, but there is another form of programming becoming
increasingly important. object oriented programming. We filn't have the space to explain it
here, but put simply, in m object oriented lmlQ1RIQ8 you l!ISk dlrtl'l to perform operations on itself.
rather than commanding procedures to act on data The original object oriented language is
Smalltalk. and current lEbating nem in LISP c1rcles 1s a standard for object or1ented. USPs.
Coral Software's Object logo for the Macintosh was due for release a couple of months back
although it 00e8n't seem to have appeared yet. You can rea:J about it, and object oriented
programming 1n general, in last August's Issue of Byt11

The ability of TLC-LOIJ) to easily pass functions as arguments might sound esoteric. but
it comes in useful at times. lml!lgine the Hilbert function on p 1 0 cEcently formatted l'!lnd then
compare it with this:

TO Hi I bart :size :I ewe I : thisUay : thaUiay
IF :level = 0 ISTC:.J
Rllt Ll ST : th i sUau 90
Hi I bert :size :level - 1 : thaUiay : thislolay
f(RIR) :size
IUt LIST : thaUiay 90
Hi I bert :size :level - 1 : thislbJ : thaUiay
Rllt LIST : thaUiay 90
fCRIR) :size
Hilbert :size :level - 1 : thlsUay : thatUay
f(RIR) :size
Hi I bert :size :level - 1 : thaUiay : thisUay
fUt LIST :thlsUay 90
Etll

That RUN liST... is the awkward part, @\thisWay would be much easier. (Try Hilbert
10 3 "RT "lT)

There are times when CONO would much neater than lf .. THEN .. ElSE, and to see what it
does rea:l the LISP version of Remove on p J 0. You might try thIs sometime:

TO Cand :input
IF EI'PTY? : input lPR •0ops I Tlft)U •tOPLEUEL. l
TEST fUt FIRST FIRST : Input
I FTFlE (Alit LAST FIRST : i nputl
Cand BUTF I RST : input
EriJ

This sort of thing works wen enough ...

Cond [[[3 > 4][PR "four)][[6 < S)[PR "five])[[S = 9)[PR "ninell[["TRUE)[PR "Truth!]])

... but this c:klesn't:

PR rm:t [[[3 > 4][0P "four))[[6 < S][OP "flve)][[S = 9)[0P "nine]][["TRUE)[OP "Truth!]J]

One ~8ntage of 8 functional LOJJ compared to 8 procedural one.

POALL Vol 2 No 2 17

After the Hilbert procedure, Helge von Koch's curve. Put three together and you have a
snowflake:

The main procedure is the usual L<X}) recursive sort:

TO Koch :size :level
IF :level = 0 (fD :size STOP]
Koch :size I 3 :level- 1
LT 60
Koch :soize I 3 : IQVQI - 1
RT 120
Koch :size I 3 :level -
LT 60
Koch :size 1 3 :level -
Eft)

TO SnowFlake :size :level
REPEAT 3 lKoch :size : I eve I RT 120 1
EttJ

Compare that, and Hs results, with what's on p 14. David's Logo procedures are a direct
translation of the BASIC. Moral: Your fractals will be as real as the language you use.

Another book that came our Wfif recently deserves a mention, on this page note, and not
Resources. It's 0..1mputer lltera:y An lnte.gra/8:1 a71.1rse ti.r .. "itn"lfli:J:Jr:v .. "icht..l:.7IS, by R.E.D. and
A.T.L. and published by Martin Educational. Chapter 3 is called 'Teaching LOGO' (s;d
'Originally', we are told, 'LOOO was designed as a graphical pr()Jramming language. Since then
other aspects ... have been ack:led so that textual and arithmetical operations can be performed
too.' (p 15) In fact, it was the other Wfif about, and you can rea:! that on p 218 of Nind;!crms
The book goes on: 'The principles of teaching LOGO in this course are aligned with those of
Seymour Papert, and expressed in his book, "Mind Storms, Children, Computers and Powerful
Ideas."' They can't even get the name right. Have they read it one wonoors?

LOI}J versions ci:!scribed are 'Apple LOGO, LOGO 2 (for the BBC computer) and OZ LOGO
(for the Microbee)' 'LOOO 2' is from Computer Concepts in the UK, and noone around here
knows anything about it. Anyone still using OZ L<X}) now that RL LCXJ) is available is well behind
it.

Chapter 5 is 'Assessment of Student Performance', complete with pretest, examinations
etc., etc. On the disk of sample programs is one named MARKS, 'used to organise and adjust the
marks from a test.' (p 26) Also on the disk is TRIANGL, a supp I ied triangle procedure.
Where's the experimentation?

I'd often wondered about the difference between LOOO and LCXJ). Now I think: I know.
LOGO seems to be authoritarian computer literacy rubbish. Logo is different.

When the BBC's official AcornSoft Logo first appeared it was promoted as 'THE LOOO TO
END ALL LOGO'S' (sk~. (Acorn Update, December 1984) Acorn now bundles, as a ROM image
on disl<, LOf)Jiron Logo with new Compact machines. Most interesting. AcornSoft's l09J has its
good points, but it's as slow as the proverbial wet week, has memory problems (like miXIe 2
being almost impossible), falls over with extended tail recursion and writes files that nothing
else will look at. L<X})tron has its quirks too, but it's ari LCSI type.

POALL Vol 2 No 2 18

Registered users of LCSI/Microsoft LO}) for the Macintosh would have received a note
about the upgrade to version I. I. It looks the same as I. 0, except for the background screen, but
works properly with recent versions of the Finder, HFS and Mac Plus. It OOe.sn't come with any
documentation on how to set up the symbol space, stack size etc. for a megabyte of memory. Odd
thing is, if you 93 to buy LOIJ.l you'll be handed 1.0 by default. If you want 1.1 you apparently
have to ask for lt. There are rumours of a version 2.

Seen an Apple 116S yet? Think of the LCMJQ that could run on it; all that memory, all the
colours and 15 voice (ie. 32 channel) sound. SETPC 4023? Somehow I oon't think it will work
that way. Let's hope LCSI gets it right. As for the Macintosh II...

Research Logo Re-reviewed .

.. A reflection on Research L[XJO on the Premium Microbee.

David D. Curt is

last put PO on the subject of Research LO}) for Pa4LL 1 (4) in May 1986. At that
time it was being used on the Microbee 128 which suffered the limitation of using
programmable graphics characters. When all the available characters had been used, the turtle
would continue to move but no further drawing would occur and the message 'OUT OF INK' would
be displayed.

Microbee Systems have now released a new mroel, the Microbee 128 Premium. This
machine still uses programmable graphics characters but 00:1itional screen RAM has been built
in so that a full screen of graphics may be proouced without the turtle running dry. To take
advantage of the extended graphics features, a new version of Research Logo (Logo+) has been
released. This Is quite a big step fD. Other detailed tmprovments have been made to the mochlne
so that the graphics are proouced faster than before although the speed of the graphics display
was never a problem.

For those people who have the earlier mroel Microbee, oo not despair. Microbee
Systems will upgrcm your existing machine to Premium specifications. They have also mcm
available an upgrare kit which is available through user groups so that the upgrade can be
effected at a lower price for those with occess to the necessary skills.

Microbee users should take an opportunity to .EXAMINE Research Logo as soon as they
can. The availability of this improved version of lcq:> should make schools think more
seriously about aooptlng this Austral I an designed and produced computer.

ACEC "87

We can look forward to these Logo papers at ACEC • 8 7, pIus some
poster sessions and other events:

Burt, P. & Kazenwadel, W. AtilingaLO{Pdirnension to calculus
carter' P. J. : .. I'Ve {PI a little 1/s/... I

McDougall, A. W/Ja/ tiJ IIley learn w/Jen they're learning Logo?
McMillan, B. LO{Pandthe teochingofLt;w: Is it still Pi8{Jetian?
Nevile, l. & Fox, C. Are/1icroworlds0verrated?
Nevile, l. LO{P is a /angull{;lJ, so w/Ja/?
Tatnall, A. LO{IJ in control Control tec/Jnolq;;y in education

POALL Vol2 No 2 19

What can I do?

Much of this issue, indeed, much of a11 recent issues, seems to be mainly for adults and
older students. Here's something for younger retliers. Some of these have been d:me, some of
them haven't. Have a try at them. Send your results in and we'll publish some.

e. tc.

