POHRLL

A Journal for Logo Users

What abouvt the

state |'m 1n ?

Kee clea
of Pgin‘i he:c!

@
-

7ape A//_'yqnaf

‘£ Y

,697
2‘@@@97;%7
D D

Volume 2 No 2, April 1987

The unthinkable has happened; P04// contains a BASIC pragram. When you see it you'll
understand why.

A certain bureacracy has moved me again. |'m now at Salisbury High School.

The E-Mail age has arrived at APa4/L Three articles in this issue have arrived,
courtesy of the Red Ryder on the Mac, via the Magill VAX. If you have access to that machine,
mail your contribution to CARTER, and for Nexus users, the address is PCARTER.

ACEC 87 is fast approaching, and the various committees will soon be editing the papers
and preparing them for the proceedings. The Logo papers we know about are listedon p 18. Will
be an exciting time.

Theme article for this issue is another in the Computing Science series. Special thanks
to the contributors to this issue.

P—&~‘fw 4 Coer T

POTS
2 Turing Machines | 15 Scissors
7 Resources 16 Computing at Entropy House
9 TLC-Logo for the Commodore Amiga 18 Resesrch Logo Re-reviewed
12 Thinking Logo 19 What can | do?

13 Fractals - Logo Style

© 1987 PRI Carter, D Cert’s, H.rigyde

POALL Vol2 No 2 2
Turing Machines:

Alan Turing (1912..1954) was a brilliant, but tragic, figure in the history of
computing. During the war he was a key member of the team at Bletchley Park that decoded
German communications, securely encrypted, so the German High Command believed, by the
Enigma mechines. The full extent of the work at Bletchley Park has never been revealed, but it
was to lead to the development of Colossus, arguably the world's first, if specialised, electronic
computer*. Had the Enigma codes not been broken the world would almost certainly be a very
different place today.

in 1936 Turing published a paper, ‘On Computable Numbers..." That paper defined the
limits of computability, what computers could and could not do. He made use of a theoretical
machine, the ‘Turing machine’, which he did not propose to build, but used as an example of
logical reasoning. 1t stands as a model of all modern computers.

A Turing machine consists of & device to read from and print on a paper tape marked
with 1s and Os. It can move along the tape, reading and printing one character at a time
according to the rules incorporated into its mechanism. The rules describe the ‘states’ the
machine is to adopt as it moves to and fro along its tape.

As John Hopcroft says, ‘The best way to understand how a Turing machine works is to
try to build one.’ Rather then assemble cogs and things, all we need to do is specify the rules
needed to perform some action. For example, let’s make a machine to add two numbers, 2 and 3,
which will be represented on the tape by 000110111000. We'll start the machine with its
read/print head over the leftmost 1, and in what we'll call state 1. The easiest way to do it is for
the machine to move the 11 string against the 111 across the O, moving only one step at a time.
To do that we'll let the machine move to the right until it comes to the first 1 in 11 (a in the
diagram below). It changes the 1 into a O, changes itself to state 2 and moves to the right. In
state 2 it takes no notice of any 1s it finds (b) but moves right. When it finds a O it changes it to
a 1, enters stage 3 and stops (c andd). The final result on the tape is 000011111000.

State: § g State: | 2

[djoofrofi hic

_ 0] [@ooolo1 000
3 b B ”

State: | 2 ; Stale: | 3

[oddo i (] Qoo [oo o 1§ 1f 00

"

z d

* Contrary to what some books may suggest, Colossus was not used on Enigma codes but on messages
encoded by Geheimschreiber, a modified teleprinter with 10 encoding rotors. Enigma lives on in the
crypl command of the UNIX operaling system. As the manual states: ‘Crypt implements a one-rotor
machine designed on the lines of the German Enigma, bul with a 256-element rotor. Methods of
attack on such machines are known, but not widely; moreover the amount of work is likely to be
large.’ It was. Some 10 000 people worked on the decoding task for the six years of the war.

POALL VolZ No 2 3
The rules built into a Turing machine must either cause it to stop or specify ihree
things: what it must print on the tape, the state it must assume, and whether it is to move to left
or right. The rules for our first machine are these:

State Symbol Print New State Movement

1 0 0 1 R

1 I 0 2 R

2 0 3| 3 R
2 1] 2 R

3 0 Stop

3 1 Stop

Rules like that can be expressed in Logo as well as a table like that, but before we try
we'll need to decide a couple of things. Our tape will be in the form of a word, a free varisble.
The machine’s position on the tape will also be a free variable, and the two will be free because
the machine ‘knows’ nothing of the rest of the tape or its position. The only things represented
in it are its state and the rules. We will need some way of reading the tape, printing on it and
moving the machine. On the screen we'll represent the tape by simply printing it and the
mechine by printing its state above the ‘tape’. That leads to these procedures (Note thet this is
not a real, but an idealised Logo. You #/// need to make changes, especially to the IF..THEN..ELSE
line in Move):

TO ReadTape
OUTPUT ITEM :position :tape
END

TOPut :symbol

SETCURSOR SE :position * 2 6

TYPE :symbol

MAKE "tape Replace :position :symbol :tape
END

TO Replace :position :symbol :tape

IF EMPTY? :tape [OUTPUT -]

iF 1 = :position [OUTPUT WORD :symbol BUTFIRST :tape]

OUTPUT WORD FIRST :tape Replace :pasition - 1 :symbol BUTFIRST :tape
END

TO Move :direction :state
SETCURSOR SE :position * 2 S
REPEAT 2 [TYPE CHAR 32]
IF «direction = "R
[MAKE "position :position + 1]
[MAKE “position :pesition - 1]
SETCURSOR SE :position * 2 S
TYPE :state
END

Now, let’s pseuodocode the machine itself:

read the lape t _

If the state Is 1 and the symbol is 0, then print 0, assume slete 1 and move right
I7'the stote is 1 and the symbol Is 1, then print 0, assume slale 2 and move right
it the state is 2 and the symbol is O, then print 1, assume state 3 and stop

i1 the stete Is 2 and the symbol Is 1, then print 1, sssume state 2 and move right

POALL Yol2 No 2 4

- Asyou may gather from that, the Logo could be lines of IF AND ... THENSs, but if we do
that we will eventually have very large, cumbersome procedures. Instead, we'll go this way...

T0 Machine :state :rules

LOCAL [symbotl instructions]

MAKE "symbo) ReadTape

MAKE "instructions LookUp SENTENCE :state :symbol :rules
IF EMPTY? :instructions [Halt STOP]

Put FIRST :instructions

Move FIRST BUTFIRST :instructions LAST :instructions
Machine LAST :instructions :rules

END

TO LookUp :conditions :rules

IF :conditions = FIRST FIRST :rules [OUTPUT LAST FIRST :rules
LookUp :conditions BUTFIRST :rules

END

...with the rules as a list:

MAKE "rulest [[[1 0J[OR 1]]{[1 1]{OR 21}{[20][1 R 3]}[[2 11[1 R 2113 1111

The first sublist in each sublist, eg. [2 0], is the state and symbol read, the second, [1 R 3] is
the symbol to be printed, the direction to move, and the new state. A[] is the signal to hait.

To make life easier we could do with a couple ‘more procedures, and 8 a represents 8
space to be printed:

TO Halt
SETCURSOR [0 10]
PRINT “Finished
END

TO Setup

LOCAL “state
CLEARTEXT

PRINT [Turing Machine]
SETCURSOR [0 15]

TYPE [Enter the tape:\a)

MAKE “tape READWORD

PRINT *

TYPE [Enter the starting position:\a)
MAKE “position READWORD

PRINT "

TYPE [Enter the initial machine state:\a]

MAKE “state READWORD

PRINT ~

TYPE [Which machine?\al

Start READWORD :state

END
T0 Start :machine :state ' TO PrintTape :tape
SETCURSOR SE :position *2 S IF EMPTY? :tape [STOP]
PRINT :state TYPE WORD FIRST :tape CHAR 32
SETCURSOR [2 6] PrintTepe BUTFIRST :tape
PrintTape :tepe : END

Machine :state THING WORD "rules :machine

END

POALL Voi2 No 2 5

Try it first with the values given in the example earlier, 000110111000 for the tape,
4 for the position and 1 for the state, then with other tapes. Try startingon one of the leading Os
and see if that makes any difference.

Adding two numbers like that may not be the most exciting so let's try something more
complex. This time we'll start with a tape like this:

00J1 1 1]0]1000]0

N/
N P
and copy the 111 across to finish with 0011101110. The 111 on the left we'll consider as
being in a register named A, the result will be in reglster A, and the O in the middle is the
break between them. Here are the rules:

State Symbeol Print New State Movement Comment

1 0 0 1 R Move to left end of #

1] 0 2 R Mark left endof # with O

2 0 0 3 R Move across break

2 1 1 2 R Move across # to bresk

3 0 1 4 L Copy 1 st rightendof P

3 1 I 3 R Move past I1sin 2

4 0 0 S L Move left across break

4 1 ! 4 L Move left across 2

S 0 1 8 L 0 to left of break shows copying complete
5] [6 L Move left from break into A change state
6 0 I 7 R Begin move of O marker to right

6 1] 6 L Move left across #

7 0 Doesn’t happen in this machine

7 ! 0 2 R Complete move of O to right

8 0 0 Finished

8] 1 8 L Move left toend of #

Let’s put that into Logo (Use EDN. You'll probably find it easier to type it like this and
then remove the <Returnd>s):

MAKE "rules2 [[[1 0J[OR 1]} {[1 1]{OR 2]]
{[20l[oR31}[[21][1R2]]
({3011 L4l [[31}1R3]]
[[40lfoLsSli{[41][1L4]]
f[solftL8ll{[5S1}1L6]]
[[eo)i1Le6])[l61][1L6]]
([71)[OoR2]1[[8 1]{1L8]]
{(80]11]

Try it with tapes like the one earlier and watch the machine shuttle forth and back. it
takes 30 moves with that tape, starting at position 1 instate 1.

Let's now build on that machine to produce one that multiplies two numbers on tapes like
this.

Oft 1{0]111/0]000000|O0
——— e

Ny

NN p

POALL Voi2No2 6

The 111 isin A as before, the 11 isin /7 and the answer will appear in £ Acouple of rules
are slightly changed, the rest are simply added to the last set, and no, there isn't astate 9. The

machine will work by copying, which is why 1t incorporates the copying machine, and you can
begin at position 1 in state 10:

State Symbol Print New State Movement Comment

8 0 0 12 L Move left between /7 and &/
8 1 i 8 L Move to left end of &/
10 0 0 10 R Move to left end of /7
10] 0 11 R Mark left of /7with 0
11 0 0 1 R Begin copy
i1 1 1 1R R Move across /7 to break
12 0 | 15 L 0 found to left of break between
/7 and A, product in 2
12 1 1 13 L Move into /7 must change state
13 0 1 14 R Begin move of O marker in /7
13 i 1 13 R Contine across /7
14 0 Doesn't occur
14 i 0 11 R Move Oin &7
15 0 Finished
15 1 1 15 L Move to left end of 77

MAKE "rules3 [[[1 OJ[OR 1] etc...

You may think all that is a very complicated set of rules just to multiply two numbers,
and you're probably right. But that is how &7 computer works, one tiny binary step at atime,
and we can define Turing machines 1o do anything that can be done by computers. The Turing
machine is a model of all compulers; a madern computer is a ‘universal’ Turing machine, with
its memory taking the place of the tape and a program the rules.

The point of Turing's paper was that he was able to prove that any mathematical function
was computable if it could be computed by some Turing machine, in other words by some
specified set of logical steps, an algorithm. To understand why that was important you need to
know about the work of Russell and Whitehead, Gddel, Church and others in the early part of the
century. That's beyond us here, but it lies at the base of much of what we do in compuling. Like
George Boole, Alan Turing gave us a logical foundation.

You will find Turing machines mentioned in many places, one being Chapter 2 of
Weizenbaum's fompuler Power snd Humsn Ressan, bul unfortunately the example he gives
doesn't work. The examples here came from ‘Turing Machines’ by J. E. Hoperoft in Scigntiric
Americsn , May 1984, which explains the mathematics in depth. J. David Boller describes
them in 7uring’s Man, along with many of the implications of computing. The best description of
Enigma and the work of the British Code and Cypher School is in B. Johnson's 7/4e Savel War
The biography of Turing, Alsr Turing The £nigms by A. Hodges covers the whole field in detail.
You will almost certainly come across reference to the *Turing Test® in your reading, but that's
another story...

D_Bug for Faster Pmﬁ ret v

valrdation.

POALL VYol 2No?2 7
Resources:

The second of Brian Harvey's Compuler Science Logo Slyle series is now available,
subtitled Projectls, Styles, and Technigues 1t doesn't really need reviewing, simply
recommending to everyone using Logo in secondary or higher education or interested in learning
more about and with Logo.

Layout and style follow those of the first book, and as the title suggests, this volume is
concerned with programming styles and planning methods, explained within the contexts of the
ten projects in the book. There are five sections, dealing with cryptography, games,
mathematics, utilities and pattern matching. The games described are solitaire and tic-tac-toe,
the maths includes Fourier analysis (for musicians) and the utilities include an iteration
compiler. This one takes a program written with mapping and modifies it to tail recursive form.
To illustrate pattern matching there is a version of DOCTOR, but unlike the simplistic one in
Abelson's Agple Lago this one uses a two tier structure like Weizenbaum's original. Complete
listings are in the book, but the programs are available on disk for users of Apple Logo //, IBM
Logo and Macintosh Logo.

Yolume 3 should be available some time this year, but Yolume 2 has plenty to keep you
busy until it arrives. Mentioned by Harvey is LagpWorks: Challenging Pragrams In Logo by
Cynthia Solomon, Margaret Minsky and Brian Harvey (McGraw-Hill, 1985). Australian price
is quoted as $67, and we haven't taken the plunge yet (Harvey's book is listed at $48.50). On
order is Cynthia Solomon's book Compuler Environments for Children: A réflection on Theories
of Lesrning snd Faucstion (MIT Press, 1986). Will be reviewed when it arrives.

Logo rates only a minor comment in Pragrammers st Work, abook of interviews edited
by Susan Lammers and published by Microsoft Press. Nineteen programmers describe their
styles, their personalities and something of their methods.

Gary Kildall has this to say about problem solving:

‘Part of the programming process is general problem solving. How do you solve a problem
that's complex, whether it's designing a computer program or constructing a building? You start at the
point where you think it's too hard to soive, and then you break it down into smaller pieces. That's
what | try to teach.” (p 58)

B1l1 Gates, who admits to having gone *to the garbage cans at the Computer Science centre
and | fished out listings of their operating system’ to find good examples of programming, is also
strong on the thinking process:

‘Before | sit down to code something, most of the instructions have aiready run through my
head. it's not all laid out perfectly, and | deo find myself making changes, but all the good ideas have
occurred to me before | actually write the program. And if there is a bug in the thing, | feel pretty bad,
because if there's one bug, it says your mental simulation is imperfect. And once your mental
simulation is imperfect, there might be thousands of bugs in the program. | resily hate it when | watch
some people program and | don't see them thinking.” (p 77)

That last sentence is the important one. Logo can be successfully doodled with, without
everything having run through one's head beforehand. But the thinking process is vital.
Perhaps the most fortright words come from Butler Lampson:

‘To hell with computer literacy. It's absolutely ridiculous. Study mathematics. Learn to think.
Read. Write. These things are of more enduring value. Learn how to prove theorems: A lot of evidence
has accumulated over the centuries that suggests this skill is transferable te may other things. To
study only BASIC programming is absurd.” (p 38)

Logo is as good a medium for learning mathematics and proving theorems as anything. A
very interesting book.

POALL Voi2No2 8

Another non-Logo book is AMcrac/ip by 1. R. Reid and published by Pan. Reid writes
for the Washington Post and his book reads well, even if a couple of minor points are doubtful.
It's a history of the developments, Including the litigations and technical details, of integrated
circuitry. There ere some good ideas on the problem solving process, especially from Jack
Kilby:

*...Somewhat simplified the method involves two lavels of concentrated thought.

At first, the problem solver has to look things over with a wide-angle lens, hunting down
every fact that might conceivably be related to some kind of solution. This involves extensive reading,
including the cbvious technical literature but also a broad range of other publications... “That's all
right.” Kilby says, “You read everything-that's part of the job. You accumulate all this trivia, and you
hope thal someday maybe a millionth of it will be useful.” For recreation, Kilby says, "I read trash.”

The next step in Kilby's system requires switching to an extremely narrow focus, thinking
strictly about the problem and tuning out the rest of the world. This requires, first of all, an accurate
definition of the problem. “The definition of the problem becomes a major part of the innovation,”
Kilby has written. "A lot of solutions fail,” he says, "because they're solving the wrong problem, and
nobody realises that until the patent is filed and they've built tha thing.” It is also nacessary to devealop
a clear understanding of the natural constraints surrounding the problem; the heart of the inventor's job
is finding a way to slip past the roadblocks eracted by nature...

In this concentrated, single-minded focus on the question at hand, the problem solver must also
tune out all the obvious solutions. This is a key principle, important to emphasize because it is
somewhat counter-intuitive. The mind tends to jump to the answer that is immediately evident. In
fact, this answer is probably wrong. If the problem is of any importance, all the obvious solutions have
been tried already..Some of history’s most important innovations, he says, were so nonebvious as to
violate the scientific rules of the day. “You only arrived at the invention when somebody developed a
method that everyone else had already decided was obviously wrong.” " (pp 56..57)

Traditionally, Logo has always had something of a mathematical bias. Seymour Papert
on LogoWriter:

*..Many teachers who feel more comfortable dealing with domains that focus on verbal or
dramatic content rather than on mathematical concepts will now have access to the Logo culture. My
second remark anticipates the inevitable question: ‘But will this skill of making LogoWriter
presentations transfer to increased writing skills in gensral?’ My answer is simple. If you see
transfer as an automatic process that needs no encouragement from you, it may or may not. But | am
convinced that your imagination as a teachsr wnll show you how to use LogoWriter programming as a

transition to pure writing.” (Snarfed from Sot/mes who snarfed it from Classroom Computer
Laarning)

if you're working in primary school with Apple or IBM, do have a look at LogoWriter. A
Commodore 64 version is apparently on the way. It's an expensive package, but includes site
licence, lots of excellent teaching ideas and materials, and even “take home’ licences.

For the musically inclined, Terrapin recently released Terrapin Music Logo for the
Apple. It can be used to compose music in six voices with normal Logo precedures through an
ALF synthesizer with amplifier, and comes with comprehensive documentation. Terrapin have
also released the /aworks™ support materials, with the first being LapwWorks: Lessons in
Logo and 7he Lago Praject Book: Exploring Words end L ists More ere on the way.

| vse Auto Wax +o /{e&F
my s hell 3/€am;n9

POALL Vol2No 2 9

TLC-Logo Beta 1.4 for the Commodore Amiga

. A Logo is on the way for the third of the 68000 micros, the Commodore Amiga. The Mac
has had LCSI/Microsoft Logo and ExperLogo for some time, and the Atari ST machines have
DR Logo supplied with them.

TLC-Logo is, well, different, being based on & rather different model of what Logo should
be, and it would be as well o consider Logo's ancestry for a moment. Logo derives from LiSP,
ke language of artificial intelligence for nigh on 30 years, but its designers changed a few
things along the way, mainly to remove the parentheses. Where LISP would say
(Thingo 1 2 3) Logo has Thingo | 2 3. Likewise, {(Thinge (Wotsit S 6) 7 8)
becomes Thingo Wotsit S 6 7 8. The Logo looks easier without (the ()) but the problem
comes with expressions like (Thingo 1 2 size) which cannot be represented as
Thingo 1 2 size. That word size is not the name of a procedure, it is a variable, so to
distinguish it, : (dots), as in :size. (Dots has a meaning, it's not just a convenient label. :size is
shorthand for THING “size, in other words, ‘return the value bound to the word size’.)

So far so good, but in the opinion of John Allen, president of The LisP Company that
makes TLC-Logo, there were some liberties taken. LiSP is functional, that is, every module of
code returns a value, even if it is only nil or t. The usual Logo is procedural, and for a value to
be returned it must be OUTPUT. To Allen that is a disadvantage, and TLC-Logo's major difference
from the Logas from LCSI, Terrapin etc. is that it is functional. Something of what this means in
practice will be seen from sample procedures later. Another significant difference is that every
function is a perfectly ordinary list; the TEXT operation of conventional Logos is unnecessary.

TLC-Logo Preliminary Yersion Beta 1.4 for the Amiga came with 12 badly photocopied
pages of documentation, simply a list of the primitives. No instructions on operating the
system, just the primitives, many of which behave somewhat unexpectedly, and not always
consistently with what is in the book by John Allen and his colleagues, 7Ainking About [7LCT
Laoga Understandably the team at Angle Park wasn't very impressed, especially as noone could
work out how to define procedures from the editor.

The list of primitives is interesting however, including ACT to activate multiprocessing,
CASE, which works like the Pascal one even if the syntax isdifferent, FOR, an extended REPEAT,
MAP and MAPQ. There is COND, LiSP’s equivalent of IF..THEN..ELSE, and DO, something like
Logo's RUN. Many predicates take the form ISEMPTY, ISFUN, ISMINUS, ISTHING etc. A
potentially useful list mutating primitive is SET. TLC—&ogo can HATCH multiple Turtles, the
default one being ‘STUDS The original, inevitable, turtle', but addressing them is not a matter
of TELLing them as in other versions. The default shape is an odd oval, actually stretched {}, but
shapes can be redefined,

First attempts brought forth some interesting error messages, including this one:
Error: if doesn't Hke nothing near polyspi
Just the thing to start an English lesson. Another, after areal crash:
Guru Meditation #00000005.0000A708

Now you know whal system programmers do in their spare time.

* There is a play on words here. Studs is named after Studs Turkel the sociologist.

POALL Yol2 No 2 10

Eventually | got PolySpi to work {TLC-Logo is case insensitive, but defaults to lower
case):

to polyspi :size :angle :inc

:size > 200

iffalse [fd :size rt :angle polyspi :size + :inc :angle :inc]
end '

Remember that every piece of code returns a value, so the line :size > 200 is equivalent to

TEST :sfze > 200 in the Logo you're used to. TLC-Logo does polyspi 1 123 1 in a little
~ over 3 seconds, or about 8.5 with Studs visible. Maclogo tekes over 14 seconds.

There are some demonstrations on the disk. One of them draws a good resemblance of
M. C. Escher's 1964 print ‘Square Limit’. Another has a number of traditional fractal
graphics, including:

to hilbert :size :level @fn @gn

:level = 0 :

iffalse [fn 90 hilbert :size :level - 1 @gn @fn fd :size gn 90 hilbert :size
:level - | @fn @gn fd :size hilbert :size :level - 1 @fn @gn gn 90 fd :size
hilbert :size :level - 1 @gn @fn fn 90}
end

Two things about that. The good thing is that functions can be essily passed as arguments (the
@fn business). The bad thing is that the formatting of functions is absolutely sbominable, and
nothing like what is shown in 7%nking Aout [TLC] Lagg, or possible in any LISP system.
Without knowing how the editor works it's impossible even to enter a function like thet; when
the cursor reaches the edge of the screen that's it. Something that really does need attention
before final release.

| was determined to get a list processing function to work, one | often use in various
forms:

TO Remove :item :object

IF EMPTY? :object [OUTPUT [}]

IF :item = FIRST :object [OUTPUT Remove :item BUTFIRST :object]
QUTPUT SE FIRST :object Remove :item BUTFIRST :object

END '

That's best done with COND in TLC-Logo, but | had to abbreviate to put it all on one line:

tor:izo

cond [[isempty :0 [J1[:i = first :0 r :i bf :0]["true fput first :0 bf :0}]
a‘d .

Yuk! This would have been more like it:

{ de remove (item object)
(cond ({null object) nil)
((eq item (car object)) (remove item (cdr object)))
(t {cons (car object) (remove item (cdr object))))))

POALL Yol2No?2 11

Besides being fast, TLC-Logo has more stack space than anything else around. This
function stopped with the very descriptive message Error: error with :number at 4095:

to thingo :number
printnl :number
thingo :number + 1
printnl "#

end

The figure for MacLogo (default stack on S12k machine) is 1389, and for the disastrous
Atari ST Logo, 217. | wanted to try to find the maximum length of list that Remove, alias r,
could handle, but couldn't work out how to cons up long lists. SE and WORD do rather different
things from standard Logo versions.

The Amiga's windows and mouse look superficially like the Mac's. Perhaps as a Mac user
{"ve been spoiled, but | found the Amiga system somewhat cumbersome. The colour in some of the
demonstrations was really good though.

A school can buy an Amiga for $1495 (512k, single drive, colour monitor), say $2000
for machine and software. Will TLC-Logo be worth having with it? | think it depends. For a
primary school | have my doubts, and for high schools too, if recent experience is any guide. One
of the problems with Logo has always been that it is harder for teachers than many other items
of software. Not every teacher has had the opportunity to spend hours and hours playing about
with Logo or to be coached by someone with experience. TLC-Logo is so different from other
Logos and the materials in books that most teachers are likely to have so many problems they
will give it away. That's unfortunate, because TLC-Logo isn't difficult, in fact some things are
easier, but there are all too few support materials, only 7hmking sbout [7LCJ Logo st present.
Some will find its style aggravating, but the book is an excellent discourse on the philosophy of
Logo in general and TLC-Logo in particular. | wouldn't be surprised if it forms part of the
system's documentation.

Despite, perhaps because of , its differences, TLC-Logo is a very powerful system, more
advanced in several aspects than the usual Logo, with vectors, streams, environments,
multiprocessing and the like. They are features needed for university level teaching and Al
research. This Logo's place may well be in tertiary institutions where it can be supported by
people with LISP experience who understand and appreciate its power.

Without denigrating TLC-Logo in any way, for most Amiga users | think a conventional
Logo would be better. Mac users have a choice and so do users of MS-DOS machines. Perhaps
Commodore might commission an Amiga Logo from Terrapin, who make Logo for the C 64.

My thanks to Ralph Leonard and the team at Angle Park for the opportunity to try it.

The book:
Allen,J. etal ThinkingAbout [TLC] Logp Holt, Rinehart and Winston, 1984
(Reviewed in the first issue of PO4LL)
The manufacturers:
The LISP Company 430 Monterey Ave. #4 Los Gatos California 95030

(As the name suggests, they supply (highly regarded) LiSP systems.)

POALL Vol 2 No 2 12
Thinking Logo by Peter J Carter

Reviewed and strongly recommended by Hartley Hyde

Thinking Loge s a book which follows more closely than most the Logo path to
educational growth which was first visualised by Papert (/7indstarms, 1980). While reference
is made to useful techniques, the book is one which encourages the reader to think, rather than
learn to program.

During the last five years | have collected a scrap book of Logo teaching ideas; photostats
of magazine articles and serviettes borrowed from dinner {ables at which the conversation had
turned lightly to a discussion of Logo procedures. After reading Carter’s new book, | now face a
major spring cleaning task, whereby most of this material can be discarded. Thinking Logo
provides an encyclopaedic coverage of the topic. Whereas most text books agonise through the
traditional turtle graphics chapters and then give passing reference to just a few of the more
interesting aspects of the language, Carter has not only collected all of these concepts into one
yolume, but he has also woven them into a clear, logical educational treatise.

Carter is currently listed by the prestigious user group magazine Cs//AP.P.L.E as one
of only two Logo consultants in the world. He is a child of the Logo universe: but his expertise
goes largely untapped in our community. The wisdom expressed in St. Luke 4: 24 continues
through the ages. Carter’s contribution is seriously underestimated by South Australians. We
should compare the high quality of Peter’s articles in this magazine with those of more glossy
overseas publications.

Yes, criticisms will be made. Because the book is encyclopaedic, teachers who wish to
promote a particular narrow view of education through Logo, will be frustrated by the variety of
different paths which Carter pursues. For example, those who might examine the book as a
Computer Studies text will find much useful information, but they will also find many sound
educational practices which fall outside the narrow view imposed by the intellectual disipline of
that subject. In some ways, Carter has used this book to preach a message guiding us back
toward the Papert concept, away from those who would limit our use of the language to a
particular and narrow purpose.

Finally, readers of this magazine will understand, but others should be warned, that the
Carter concept of wit is unique: it should be aquired slowly or it may hinder communication.
Who else would reference a book in its own Bibliography as:
An amorphous and idiosyncratic book for students to

learn programming through Logo, with a self-referential
bibliographical entry.

Thinking Logo

An Introduction to [the Universe through] Programming

Available mid-April $9.00 plus postage
<> ;
a

POALL Y012 No 2 13
Fractals - Logo style

David D. Curtis, SACAE Megill

The attached BASIC listing was published in &n/ie [1]) recently. 1 surely is a case of
using an inappropriate tool to do a job. The program satlempts to simulate recursion in a
language which was not developed to support it and which does not support local variables. It
does this by creating and manipulating string variables. How good a simulation it is is not
being debated here, although it is an interesting programming exercise. it is however
instructive to compare the listing with a pair of Logo procedures that do the same job.

inspection of the code presenled in the two languages reveals that the Logo procedures
are much more compact and are | believe more readable. Readability of code is very important,
‘especially in education, where programs are a means of communicaling programming ideas
with students and peers as well as communicating commands to a8 machine.

The BASIC listing is written for a Microbee using MicroWorld BASIC which is one of
the versions of that language supplied with the machine. Variable names are a little different
from those used in other dialects in that integers ere represented by single letter variable
nemes, reals are represented by a single letter followed by @ number from O to 7, while
strings are represented as are reals except for the appended $ symbol. Integersand reals may
not generally be freely mixed, hence the use of the FLT and INT functions. The syntax of
string functions i1s a little different from many other dialects. AO$(;M,N) is equivalent to
MID$(AO$,M N). Constents 511 and 255 reflect the 512 by 256 dot resolution on the
graphics screen.

The variables used in the Logo procedures (:S, :L and :N) represent the number of

sides of the base figure, the length of each side of the base figure and the number of levels
desired for the figure.

Logo Procedures:

TOFRACTAL :S:L:N
IF :N = O [REPEAT :S[FD :L RT 360/:5]}
[REPEAT :S[FD:L/:SLT (180-360/:S) FRAC:S:L/2 :N-1
FD:L/:SRT 360/:S]] '
END

TOFRAC:S:L:N
IF :N = O [REPEAT :S-1 [FD :L/2 RT 360/:S] LT 180}
[REPEAT :S-1 [FD:L/:SLT (180-360/:S) FRAC:S:L/2 :N-1
FD:L/:3RT 360/:5) LT 180)
END

BASIC listing:

00100 REM Fractal program for the Microbee

OOl 1OREMExamples3N1,3N2,3N3,3Y3,3Y4
00120REM4Y2,4Y3,5Y1
00130B0$=""A1$=""B13=""

00140 C4=3.1415927/180:M6=511:M7=255

00150 INPUT "Number of sides? ";S

00160 C6=M6%.7:C7=M7*.7:6=INT(C6) H=INT(M7-C7)+1
00170 INPUT"Inverse? (Yes/No) ";103:10$=108$(;1,1)

..... continued

POALL Yol2 No 2 14

00180 REM Angles to turn left and right

00190 RO=-360/FLT(5):L0=R0+ 180

00200 IF10$="Y" OR 10$="y" THEN LET CO$="A"-W0=R0:R0=-L0:L0=-WO
ELSE LET CO$="R"

00210 A0$=C0$

00220 IFI0$<:>"Y" AND 10$<¢>"y" THEN 290

- 00230A1$="R":T=5-2

00240 FORN=1TOT

00250 A1$=A13+"L"

00260 NEXT N Froctel 3 80 1

00270 A1$=A1$+"R"

00280 GOTO 340 <

00290 A1$="L"T=5-2

00300 FORN=1TOT

00310 A1$=A1$+R"

00320 NEXT N ‘

00330A1$=A18+"L" Fractal 3 80 2

00340 INPUT"Number of levels? *J

00350 IFJ=1 THEN 450

00360 REM Expand string for multiple levels

00370 FOR N=2 TOJ :K=LEN(AOS)

00380 FORI=1TOK Fractal 3803

00390 BO$=BO$+A0$(;1,1)+A1$

00400 NEXT

00410 A0$=B03$:BOg=""

00420 NEXT N

00430 REM Scale size of diagram to fit screen

00440 REM The factor (1.49) has to be reduced for more complex figures

00450 L1=M6%*1.49/(FLT(S)*Z"FLT(J))

00460 HIRES2

00470 FORZ=1TOS

00480 FORN=1 TOLEN(AOS)

00490 BI13=A0$(;NN)+AIS

00S00 FOR =1 TOLEN(B1$)

00S10 BO$=BI$(;I,1)

00520 IF BO$="A" THEN LET YO=Y0+WO0:G0T0 540

00530 IF BO$="L" THEN LET YO=Y0O+LO ELSE LET YO=YO+R0O

00540 A7=V0*C4

00550 X0=X0+L1*COS(A7):.YO=YO+L1%SIN(A7)

00560 X=INT(X0).Y=INT(Y0):D=X+INT(C6).E=INT(M7-Y0*.58-C7)

00570 PLOTGHTODE

00580 G=D:H=E

00590 NEXT |

00600 NEXTN

00610 NEXT Z

Reference:

MacLechlan K.R. ‘Fractal’. dn/ine Z8 p38. October, 1986

Editor°s Comment:

I can’t spesk for the BASIC, but the Logo version does work, &s shown by the samples.
But are they real fractals? Compare them with the sample SnowFlakes elsewhere in this issue.
Why do people still advocate BASIC in education?

POALL Vol 2No 2 A 15
Scissors
More adaptations from the pages of 7urt/e Geometry

The usual Poly procedures, PolySpi, DuoPoly, MultiPoly, and all the rest, are based on
straight lines. That need not be. We can replace each line segment with a scissors:

TO Scissor :distance :angle
RIGHT :angle

FORMARD :distance

LEFT 2 * :angle

FORUARD . :distonca

RIGHT :angle

END

Now we can define a ScissorPoly, complete with stop rule:

T0 ScissorPoly :distance :angle :phase :totalTurn :doneOne

IF AND :doneOne O = REMAINDER :totalTurn 360 [STOP]

Scissor :distance :phase

LEFT :angle

ScissorPoly :distance :angle :phase :totalTurn + :ongle “TRUE
END

As you try it, think about how that stop rule works, and watch how the shape changes as
the phase changes. Think also about the symmetry and topology. :

S 77,

ScissorPoly 60 156 aﬂ 360 F ﬁnLiE 4

We could, instead of bending each segment, shrink it:

TO shrinkPoly :distance :angle :localPhase :localPhaseChange

FORUARD :distance * COS :localPhasa

LEFT :angle _
shrinkPoly :distance :angle :localPhase + :localPhaseChange : localPhaseChange
END

Segments disappear when :localPhase = 90. Study how these shapes change with changing
:localPhaseChange, and invent a stop rule.

ShrinkPoly 60 72 30 45

. , - .
/‘ -,
ShrinkPoly €0 72 20 20 \

N —~—

V”’R\"—-\-__{! i

POALL Vol 2No 2 16
Computing at Entropy House

Just add Logo and stir...

Something of the functional style of TLC-Logo and LISP can be seen elsewhere in this
issue. It's not hard to get used to it, but there is another form of programming becoming
increasingly important, object oriented programming. We don't have the space to explain it
here, but put simply, in an object oriented language you ask data to perform operations on itself,
rather than commanding procedures to act on data. The original object oriented language is
Smalitalk, and current debating item in LISP circles is a standard for object oriented, LISPs.
Coral Software's Object Logo for the Macintosh was due for release a couple of months back
although it doesn't seem to have appeared yet. You can read about it, and object oriented
programming in general, in last August's issue of 8y

The ability of TLC-Logo to easily pass functions as arguments might sound esoteric, but
it comes in useful at times. Imagine the Hilbert function on p 10 decently formatted and then
compare it with this: '

"TO Hilbart :siza :lavel :thislay :thatHoy
IF :level = 0 ISTOP]

RUN LIST :thisHay 90

Hilbert :size :level - 1 :thatliay :thisloy
FORUARD :size

RUN LIST :thatlay 90 :
Hilbert :size :level - 1 :thislay :thatlay
RUN LIST :thathay 90 :

FORUARD :siza

Hilbert :size :level - 1 :thislay :thatday
FORNARD :size

Hilbert :size :level - 1 :thatlay :thislay
RUN LIST :thislay 90

END

That RUN LIST... is the swkwerd part, @thisWay would be much easier. (Try Hilbert
10 3 "RT "LT) L

There are times when COND would much neater than IF..THEN..ELSE, and to see what it

does read the LISP version of Remove on p 10. You might try this sometime:

T0 Cond :input

IF EMPTY? :input [PR "Oops! THROW “TOPLEVEL]

TEST AN FIRST FIRST :input

IFTRUE [RUN LAST FIRST :inputl

Cond BUTFIRST :input

END

This sort of thing works well enough...
Cond [{[3 > 41[PR “four]}{[6 < S}[PR “fivel)((8 = J[PR "nine]J{["TRUEJ[PR “Truth!]}}
_..but this doesn’t: |
PR Cond [[[3 > 4][0P “four]][[6 < S){OP "five]){[8 = 9][0P “nine]I[[“TRUEI[OP “Truthi]]]

One advantage of a functional Logo compared to 8 procedural one.

POALL Yol 2No2 17

After the Hilbert procedure, Helge von Koch's curve. Put three together and you have a

snowflake:
. - o e UM
RN d ____,r I-.‘.___fr L_? R
{.— 'x-. !n.r

. e ~ jl'-'l_. : Tom,
-~ -, . - *

4
< > < o A,

-,

ik

1 4
[3 [:1.

e -~ T 1’- i - "
- - 7 1 A 1,\7 8
L""-.I 1—-’\['z.-.:"'t-} 'ﬂz-r"'\.-.f'

Lawel t Leval 2 Level &

The main procedure is the usual Logo recursive sort:

TO0 Koch :size :level

IF :level = 0 IFD :size STOP]

Koch :size £ 3 :level - 1

LT 60

Koch :size / 3 :level - 1

RT 120 TO SnowFlicke :size :level

Koch :size 7 3 :level - 1 REPERT 3 [Koch :size :level RT 1201
LT 60 END

Koch :size /7 3 :level - 1
END

Compare that, and its results, with what'son p 14. David's Logo procedures are a direct
translation of the BASIC. Moral: Your fractals will be as real as the language you use.

Ancther book that came our way recently deserves a mention, on this page note, and not
Resources. W's camputer Lileray An Inlagrstdd Course Iar Seondery Sfnols, by R.EED. and
AT.L. and published by Martin Educational. Chapter 3 is called ‘Teaching LOGO’ (573
‘Originally’, we are told, ‘LOGO was designed as a graphical programming language. Since then
other aspects ... have been added so that 1extual and arithmetlical operations can be performed
too.” (p 15) In fact, it was the other way about, and you can read that on p 218 of Mindkéarms
The book goes on: 'The principles of teaching LOGO in this course are aligned with those of
Seymour Papert, and expressed in his book, “Mind Storms, Children, Computers and Powerful
{deas.”” They can't even get the name right. Have they read it one wonders?

Logo versions described are ‘Apple LOGO, LOGO 2 (for the BBC computer) and 0Z LOGO
(for the Microbee)’ ‘LOGO 2’ is from Computer Concepts in the UK, and noone around here
knows anything about it. Anyone still using OZ Logo now that RL Loga is available is well behind
it.

Chapter S is ‘Assessment of Student Performance’, complete with pretest, examinations
etc., etc. On the disk of sample programs is one named MARKS, ‘used to organise and adjust the
marks from a test.” (p 26) Also on the disk is TRIANGL, a supplied triangle procedure.
Where's the experimentation?

I'd often wondered about the difference between LOGO and Logo. Now | think | know.
LOGO seems to be authoritarian computer literacy rubbish. Logo is different.

When the BBC's official AcornSoft Logo first appeared it was promoted as ‘THE LOGO TO
END ALL LOGO'S’ (s78). (Acarn Updste December 1984) Acorn now bundles, as a ROM image
on disk, Lagotron Logo with new Compact machines. Most interesting. AcornSoft’s Logo has its
good points, but it's as slow as the proverbial wet week, has memory problems (like mode 2
being almost impossible), falls over with extended tail recursion and writes files that nothing
else will look at. Logotron has its quirks too, but it's an LCSI type.

POALL Vol 2No2 18

Registered users of LC3I/Microsoft Logo for the Macintosh would have received a note
about the upgrade to version 1.1. It looks the same as 1.0, except for the background screen, but
works properly with recent versions of the Finder, HFS and Mac Plus. 1t doesn’t come with any
documentation on how to set up the symbol space, stack size etc. for 8 megabyte of memory. Odd
thing is, if you go to buy Logo you'll be handed 1.0 by default. If you want 1.1 you apparently
have to ask for it. There are rumours of a version 2.

Seen an Apple 11GS yet? Think of the Logo that could run on it; all that memory, all the
colours and 15 voice { ie. 32 channel) sound. SETPC 402372 Somehow | don't think it will work
that way. Let's hope LCSI gets it right. As for the Macintosh 11...

Research Logo Re-reviewed.
.. A reflection on Research Logo on the Premium Microbee.
David D. Curtis

| last put PD on the subject of Research Logo for P@4// 1(4) in May 1986. At that
time it was being used on the Microbee 128 which suffered the limitation of using
programmable graphics characters. When all the available characters had been used, the turtle
would continue to move but no further drawing would occur and the message ‘OUT OF INK' would
be displayed.

Microbee Systems have now released a new model, the Microbee 128 Premium. This
machine still uses programmable graphics characters but additional screen RAM has been built
in so that a full screen of graphics may be produced without the turtle running dry. To take
advantage of the extended graphics features, a new version of Research Logo (Logo+) has been
released. This isquite a big step FD. Other detailed improvments have been made to the machine
so that the graphics are produced faster then before although the speed of the graphics display
was never a problem.

For those people who have the earlier model Microbee, do not despair. Microbee
Systems will upgrade your existing machine to Premium specifications. They have also made
available an upgrade kit which is available through user groups so that the upgrade can be
effected at a lower price for those with access to the necessary skills.

Microbee users should take an opportunity to .EXAMINE Research Loge as soon as they
can. The availability of this improved version of Logo should make schools think more
serfously about adopting this Australian designed and produced computer-.

ACEC 87

We can look forward to these Logo papers at ACEC ‘87, plus some
poster sessions and other events:

[] L J
S’
Burt, P. & Kazenwadel, W. Adzing 3 Lago dimension o Cslculus

Carter,P.J. ‘./vegotslittle/ist..’ _
McDougall, A. What ab they Jesrn when they re lesrning Logo? m
McMillan, B. Law and the teaching of Lago: /s it still Pisgetian?

Nevile, L. & Fox, C. Are/Microworl/ds Overraled?

Nevile,L. Law /s g language, so what?
Tatnall, A. Lago in control- Control lechnolagy in edication

POALL VYol 2 No?2 19
What can I do?

Much of this issue, indeed, much of all recent issues, seems to be méinly for adults and
older students. Here's something for younger readers. Some of these have been done, some of
them haven't. Have atry at them. Send your results in and we'll publish some.

EIRI e

