FORLL

. A Journal for Logo Users .
& File Edit “Debug

Yolume 2 Number 3, July 1987

At last, this issue is ready. To me, it seems to have too much of the computer science
flavour; we reelly need people to write about what they're doing at Primery and Junior
Primery level to restore the balence that wes intended for POALL at the beginning

Introducing the theme article is a rendition of Wayne Stokes winning entry in the
Austflag 88 competition, a flag we now seem unlikely to see much of in the future. Don't
dismiss the article on page 8 simply because it deels with a problem with a specific Logo. If
you've ever wondered what .CONTENTS was for, here it is in use, and there are some genersl
problem solving clues slong the way. :

Briefly reviewed in this issue are two new books from people with Logo almost from
the beginning, Sylvia Weir and Cynthia Solomon. Sylvia Weir is to be in Australia during
August; heer her if you have the opportunity.

Preparations for ACEC ‘87 are warming up, and some fine Logo papers have come in.
To follow ACEC *87 there’s to be & day workshop &t SACAE Magill on Oct. 1st. Present planning
is for two strands, Logo in Methemetics and Logo in Computer Science, the latter probably
with Tony Adems of RMIT. Make a dete. Make a date too for BiKiLog Aug 10th, Sept. 7th,
Nov. 9th, Dec 7th, 7:30 pm in the microcomputing building at SACAE Magill.

P&‘(J-/‘
POTS
2 Turtle Yexillology 15 Nesled Polys
S Resources o 16 A Game with a name
8 AL // and the ImageWr iter 18 Entropy House

12 STOPping in Style
©® P.J. Certer, 1987

POALL Yol 2No 3 page 2

Turtle Vexillology:
Flags as objects of design:

Ever thought of flags as project idess for Logo? Flags are colourful things, and
generally composed of simple elements like blocks of colour, disks, stars and the like. For
most flags it's just a matter of working out where the pieces belong and putting them there. Of
course, the flags you choose will be dependent on the system you have; its available colours and
resolution, end you may have to teke a few liberties here and there. The proportions will not
always be correct, but the whole screen might as well be used.

There are two design aspects in Logo flags. The first is the flag itsel. What do the
colours symbolise? What is the significence of things like the fourteen points on the star on
the Malaysian flag? What events are commemorated by the flag? What does ‘vexilioloxgy’
mesn? What is ‘good’ vexillology? Enough questions to keep researchers busy for some time.
Looked at the other way round, here’s some Logo to go with Social Studies for a change.

The other aspect is that of program design. According to the programming books,
programs should be designed ‘top-down’, that is, from the abstract to the particular. As an
example, let’s consider the Australian flag, and pseudocode part of it:

lo draw an Australian 1iay
lake 8 blue soraen
arow lhe Union Jaok
drow the Coammoanmwaalth Star
araw the Sauthern Gross

How does one draw the Union Jack? Easy:

lo draw lhe Union Jaok
ahaw St Andrew s Lross
araw St Patrick s (rass
draw St Gaorge’s (ross

St Andrew’s Cross?

lo draw St Andhew s (ross
stand an the corners of the Union Jack and draw disgonsl while biacks

And so it goes, until finally you have to tell the Turtle to actually do something, to go
someplace with its pen and draw lines. If you think about it, to draw the Australian flag you
need only two real procedures, one to draw rectangular blocks of colour, the other to draw S or
7 point stars. 1’11 let you draw a structure chart and write the Logo.

Note that 1've usad the real names of the parts of the flag (yes, | know it should be
St. Andrew's saltire, and you w/// have fun with St Patrick’s) for the names of procedures to
make the program easier to understand. Meaning and understanding are important to
programming because programs are really for people to read, not for some dumb machine to

churn through. Logo is a problem solving notation for humans, not just & way of writing
instructions for computers.

‘Bottom~up’ programming is almost the natural style of Logo; using known procedures
to do something interesting. With procedures to draw rectanguler blocks, disks, triangles and
stars we can mess sbout. The students who drew the Panamanian and Norwegian flags shown
opposite knew how to draw blocks and stars, they simply decided to draw flags using those
elements and experimented until they had things where they wanted them. Putting the blue
cross in its place took several attempts, but the final set of procedures is quite logical and easy

POALL Vol 2 No3 page 3

to follow. Simfilarly, the girls working on the Czechoslovak ian flag found that Apple Logo would
not let them draw blue on red. After thinking about it, they solved their problem by drawing 8
white triangle, then redrawing it blue.

The procedures for drawing the shapes are worth spending some time on and devising
concise logic. Unless your Logo has 8 FILL primitive or is on the BBC with its triangle filling
‘nib’ you'll have to fill in areas by drawing a 1ine, moving over a bit, drawing another line etc.
Will you need an outline? As for the BBC's triangles, beware, or you may be filling unwanted
trisngles. Here’s a way to safely draw seven point BBC stars:

TO SAFE
REPEAT 3 [FD 0}
END

T0 STAR7 :size

SETPOS SE XPQS YPOS + (:size * .51)

PD SETH 167.2 Safe

SETNIB 80

FD :size RT 154.2

REPEAT 6 [FD :size * .SS FD :size * .45 RT 154.3]
SETNIB 8 Safe

END

You can write the S point version. On other systems, modify the ubiquitous PolySpi
procedure with an extra variable so that it can be made to stop at & given size. Finding the
right angles will be good exploration.

Odd shapes may sometimes be easier to draw ‘inside out’, by drawing a square and then
erasing around the edge to form the required shape. Disks are easy, FORWARD a bit, BACK &
bit, turn 8 bit etc. 1'l1 let you work from there to shapes like the Yin and Yang on the South
Korean flag and the crescent moon on the flags of many Moslem countries.

REPEAT loops will often be the way to arrange & serfes of elements like the stripes on
the United States or Malaysian flags, with plain sequential code the way to go for many other
things. The stars on the US flag shown (go on, count them) were drawn by three procedures,
one todraw a row of S, another a row of 6, and the third which kept going recursively until it
sensed that it had finished by keeping track of its YCOR. Tasks like that could also be tackled
with lists of coordinates, giving you an excuse to introduce list processing.

Whichever way, top-down, bottom-up or middie-out, there are lots of good design
opportunities, and if you should ever run out of national fags, some of the flags of Japanese
prefectures are quite striking. Then there are the international code flags, and you can design
your own flags for special occasions too, or use the emblems of special events: last yesr it was
the Jubilee 150 logo, next year the bicentennisl. Something for everyone, Year S to Year 12
and beyond.

There’s a page of the next issue waiting for your contributions.

e ———— e

S‘far*s, Crosses, Jeaves. . Graphics ===
W‘\j net Turtles?

DL
O

—

S mmummnuumm
‘J" ~h - -Jr* - E* S

e mmmmnmnmmumummmmumnmmmmuuu

A M o !!ﬂ
(R SlIIHimIllIIIIliIlIHll!llllll!IlllﬂlllllllllllllllllIIIImﬂﬂlII{I!lIHIIIHIIHIIIIIHIIHHIl

! mﬂﬂllﬂﬂﬂml
.Hm”iﬂh.! Wi l

-
[

...........

POALL Vol2No3 page S

Resources

Two books this time, by people who have had long experience with, and influence on,
Logo. The first is Cu/tiveting /Minds : A Logo Casebook by Sylvia Weir , the second, Computer
Environments for Children by Cynthia Solomon. Neither is readily available off the shelf yet,
in fact Salomon’s book is direct from MIT Press in Boston, but both deserve to be widely read.

‘In my vision...” wrote Papert in /7indstarms, describing what ought 1o be a5 much as
what had been done. Now, in Qu//tlivating /Minds, Sylvia Weir shows thet what many people
tended to dismiss as mere idealism was in fact, very real. Logo isa system with a promise. It
is a system which can chenge education; cen serve as the medium for children, including those
with deep intellectual, physical and emotional problems, to communicate and explore. This is
not another collection of anecdotes, but the result of several meticulously documented resesrch
projects.

Originally a medical practitioner, Sylvia Weir found it natural to be drawn into
working with children with problems, and has been associated with Logo at both MIT and
Edinburgh. Her book, as its subtitle implies, contains case histories of a number of children
whose lives have been profoundly changed by their contact with the computer, and Logo in
particular. One is “‘Michaeel Murphy’, with quadraplegic cerebral palsy, barely able to move
and to speak , yet with an intelligence waiting to be liberated by Logo, an intelligence that was
to enable him to go on to university studies. Another is the autistic ‘Donald’ who spontaneously
and excitely came to shout ‘See how it works!’ as he directed & hardware Turtle. Physical

Turtles turn out to be an important influence in helping children with problems, especially
autism.

While much of the book is taken up with description of the painstaking and patient
work with children with problems, there is a great deal of useful insight for all teachers.
There is sound discussion of psychological theory and teaching in general. There is also
excellent discourse on the subject of metaknowledge, at once both Logo's strength and its
weskness. Logo is one of the few educational systems which allow, almost force, teachers to
think about their own knowledge and thinking, and how to help children think about their own
thinking. The weskness lies in teachers and students being unwilling, afraid even, to expose
themselves to this sort of thing and either abandoning Logo or using it in a strictly teacher
directed manner. A small portion from some extensive discussion:

A good way to learn something is to work with an expert 8s an apprentice and engage in
“guided messing aboul”™ (Hawkins, 7he nformed Vision, rather than receive a pure diet of rules,
principles and concepls. Young children Ltend to learn by “messing sboul” naturally. Unfortunalely
they are graduslly brainwashed out of using this method as they become more sophisticated and
subject to social beliefs about “needing to be taught.” Compuler—based systems such as Logo have the
polential for doing something about this, but the potential is not realised automatically. It is
necessary to contrive the "messing about™ to make it appropriate to kinds of experience and so to
invite the desired learning.

But more is needed than the opportunity Lo mess shout. As well a3 doing, we can think about
whal we are doing. As well as perceiving, we can reflect upon our experience. Pisget called this
‘reflective abstraction.” Conscious self-reflection is slow Lo develop, and we mature es individuals
to the extent that we can look at our own functioning. It must be of benefit to a growing child to be
encouraged by the very nature of the learning environment to “look at her own thinking.” (pp 79..80)

As Weir points out elsewhere, some students have difficulties because their thinking
is unconscious, they cannot readily gain access to it to help in any debugging process.

POALL Vol 2No3 pay 6

What is learning?

How is it that 2 mind can come to understand anything new? During the usual course of
avents, if the new experience is sufficiently close to an old one, it can be seen as a version of that old
situation. Interpreting the mismatch between the two and updating the stored schema accordingly
constitute learning. Learning will happen more readily when new and old do not match exactly, but
near/y match. Instead of recording the description of the new as an isolated event, the learner
records the difference between it and the already recorded old event, and, perhaps, the significance
of that difference. The central process is making connections between experiences and betwesn

things; making judgements: about what is the same and what is different; and noting the meaning of
the difference. (p 167)

Cynthia Solomon holds a PhD in education from Harvard University, in fact her book is
a revised and expanded version of her thesis. She worked for many years with Seymour
Papert's group at MIT, and also with the Atari Research Leboratory. computer £nvironments
for Chiloren is a comparative study of four different styles of working in schools with
computers, and more importantly, of the educational theories behind them. As a confirmed
Logo user, she has an obvious leaning, but she treats all four with sympathy and reason, snd
knows the subjects of her comparisons personally.

The first is the drill and practice and rote learning environment of Patrick Suppes, 8
behaviourist. Suppes and his team developed an elementary mathematics curriculum which

was used in a number of areas in the US through the 1970s, at first on time sharing systems
and now for microcomputers.

Suppes’ approach has wide support in education, particularly among those who hope
that the computer can teach things with which teachers have not succeeded, and to students for
whom the school system has failed. Both industry and government tend to favour rote learning
ideas and the notion of the computer as an intelligent and sympsathetic teacher. Among the
asttractive features, as Solomon sees them, is the fact that the system seems to make good on its
promises. The materials are being used mainly with disadvantaged and low income students,
who, in graded tests, show improvement.

People like the Suppes approach for different reasons:

“Theorists™ like it because it has a clear intellectual structure and scientific pedigres.
“Hard-nosed empiricists™ like it because its effects can be measured. “Administrators™ like it
because its cost structure is clear. “Teachers® like it because they are free to do other activities. (p
22

As she points out, however, although the underlying psychology may be statistically
satisfying, it is of extremely limiled scope. Even Suppes admits that there are complexities
unaccounted for,

Robert Davis, subject of the second section, Is & mathematics educator who sees the
subject pragmatically rather then as an expression of logic. He sees the mechanism of
learning as discovery rather than repetitive reinforcement, and has been influenced by Piaget,
Papert and others. Davis sought to base his teaching on the everyday things about students,
using such examples as shar ing sweets to introduce aspects of mathematics.

Davis’s system, Plalo, was intended to be an environment in which students, through
illustrated games and simulstions, would discover mathematical concepts for themselves, and
several of the gomes are described in detail by Solomon. Plato, unfortunately, has never lived
up to its expectations, and what now passes as Plato on microcomputers is but a shadow of the
original intention. Not only s the quality of presentation much reduced, but the old spectre of
rote learning, so criticised by Davis, who has now left the project, has reappesred.

POALL Vol 2No3 pag 7

| felt a distinct sense of age vu with the discussion of Thomas Dwyer. His book,
BASIC 6nd the Persons! Computer, was where | started in the days of 16k, tape drives snd
Level il BASIC, and Solomon uses & number of the programs from the book in her discussion.
Solomon sees much to be complimented in Dwyer’s approach, which she describes several
times as ‘eclectic’.

Dwyer, along with Seymour Papert, Alan Kay, and many others, believes that the best
computer learning experiences consist of learning to master the computer. Instead of waiting
for new systems to be developed, or, as Papert and Kay did, develop new systems, Dwyer used
the language already available, BASIC. His programs and books, along with those by David Ahl,
Arthur Luehrmann and others, refiect an exploratory spproach, using the computer to
simulate & wide variety of situstions. But of course BASIC is also Dwyer's undoing, and

Solomon devotes several pages to a criticism of the language and the culture sround it,
concluding

‘that his work is blighted by a Aas/c inconsistency. There is an inconsistency in Dwyer's
vision between the environment he wants and the tools with which he chooses to construct this
environment. (p 100, and the emphasis (pun?) is Solomon's)

Subject of the fourth section is Seymour Papert. Solomon contrasts the views of
mathematics of Papert and the others: Suppes, Davis and Dwyer see the subject as a body of
material to be learned, although Davis is concerned with process. Papert proposes new content
that emphasises computational processes rather than arithmetic skills. He sets out to provide
an intellectual environment in which children can discover and construct new ideas, learning
from their own experiences. Solomon proposes the ‘Papert principie’: “If you want to teach
arithmetic to children, srithmetic might not be the best route into these aress for an essy
understanding of the topic. What is needed is a way of mathemestizing the child; thereafter
particular mathematical topics become easy.’ (p 114)

Much of this section could be used as a tutorial for teachers setting out to use Logo as
Solomon explains the philosophy and psychology behind the language, as well as the language
itself. The final chapler is clearly designed for teachers and would-be teachers as she
describes her views of learning and learning environments. Before ending with questions,
Solomon describes her ideal teacher:

Out of experiences in this culture a new breed of teacher emerges: This leacher is
thoroughly imbued with a coherent computer culture and its lanquage. She knows how to use this
language o talk interestingly about things people from outside the culture know and care about. This
teacher has a fluent mastery of certain powerful ideas. She is thoroughly familiar with project
terrains through which she will guide those who come for “instruction™ (but will be given something
better!). She has been there often! She knows how to observe people sngaged in thinking, learning,
puzzling, agonising, rejoicing She knows (and can only know this through experience) when to
intervene and when to let the learner struggle. She believes that the key goal for any learner is to
improve his image of himself as a learner, as an active inteliectual agent. (p 160)

Both books are well written and are clesrly the result of a great desl of careful study
and research. Both have extensive bibliographies and are vsaluable and important
contributions to the educational literature. One could almost say that in these books Logo has
come of age.

Bibliographic Details:

Solomon, Cynthia Computer Environments for Children: A Rerlection on Theories of Lesrning
and Fducstion MIT Press, 1986 ISBN 0-262-19249-7

Weir, Sylvia Cu/tivationg Minds: A Logo Casebook Harper & Row, 1987
ISBN 0-06-046991-9

POALL Yol 2 No3 pege 8

Apple Logo // and the ImageWriter
How to to solve 8 problem the /ang way:

Like most printers, Apple's /maghriter and its interface, the Super Serial Cerd, use

sequences of control characters® to control functions like type size etc. Certain functions can
olso be set with the DIP switches in the printer itself and on the interface card. One of those
functions is whether or not the printer does a line feed after a carriage return when 80
choracters have been printed on a line, and with the exception of one item of software there is
no problem.

The exception is Apple Logo //. According to the manual, AL // ‘treats the printer
interface in the same way that Apple |1 Pascal version 1.1 does.’ (p 301) Interesting, because
Pascal 1.1 and 1.2 have never caused any problems. AL // does:

T N

PrRECTEr=Sepiglcandlang thecslme_tentten.dhow what happens with App
ErL

The manual says ‘If text is being over-printed, set the printer to generate a line feed
character after each line. If text is always double-spaced, reset the printer to no/ generate
line feed after a carriage return.’ (p 304) So we set switch 1-8 in the printer and get:

“m T e
] -

7

FREGTER =

Al

g gk

1
10

fapdiend theslmfodwr bttén, 3ho what haprenzs with App
Eril

Very helpful. The problem is with the interface, and to overcome it one normally
sends a <CTRL>I C, which ‘causes the SSC to generate a corriage return character sutomatically
any time the column count exceeds the printer line width.' (SSC /nstsl/ation and Qperating
Manual, p 17) Alternatively, one can POKE 1401,1. Well, one can do that from BASIC but
AL // will have none of it. Control characters can get to the printer to control type size etc.,
but anything to the SSC is simply lost: PR WORD CHAR 9 “C or .DEPOSIT 1401 128. After
trying all this, we gave up, and printed AL // files, from disk with a small BASIC program
which first set up the printer with PRINT CHR$(9);"C"

Some time ago there was reason to write to LCSI about & MacLogo problem and they
were also asked about this one, but the letter became lost somewhere. Recently it surfaced,

and Alain Touges of the Technical Support section replied with this set of procedures:
to pr:ttm:l.nt :file

open

seterite 1
locsl "limit
make “linit 78
open :file
setread :file
loop 1w
seterite [)
close 1

close :file
o

¥ 'Control’ characters are those whose ASCH value is less than 32. They are normally typed with the

<CONTROL > key, and control some aspect of the machine or program. <CTRL> C, <CTRL> 6 and the like
are familiar Logo examples.

POALL Yol2 No3d pag ¢

to loop :line
if equalp :line [] [stop]

if (count :line) > :lisdt [printlimited :line}[(type :line char 13)]
loop rw
ond

to printlimited :rest

repest :limit [type first :rest meke "rest bf :rest]
(type °! ohar 13)

if (count :rest) » :limit [printlimited :rest stopi}
repeat count :rest [type first rest make "rest bf :rest)
type char 13

ond

S0, 1t reads a file line by line, counts the characters, and prints <Return>s as
required, although to TYPE CHAR 13 seems o bit odd. But we wonted fo be able to print from

workspace, not from a file. In short, that means that we have to write our own POTS, POPS
and PONS, and the essential logic boils down to this:

assemble o /1st of the nomes In the workspocs
wark through the list

11 the name Is the neme of 8 procedure
loke Its TEXT, st 7O, 7(s neme, . on any Inpuis, 8nd END
chonge each 1ine into & word
orint 8seh line, aatiing Returns whers necessary

11 the neme is the name of @ varishle
lrn 1t Into 8 word, with 1is neme, the ward is’etc
print It, aaing <Returns> where necesssry

To assemble the Hst of nomes we look at the system object list, which in AL //
contains all the primitives as well as our own words., The first system name s FIRST, so we
stop there but add STARTUP becauss we will want its value. Along the way we have to reject

the names of these procedures and their varfables (:buried), and the Initial input is the output
from .CONTENTS:

T0 CheckContents :contents
iF "FALSE = FIRST :contents [OP "STARTUP]
IF MEMBERP FIRST :contents :buried [OP CheckContents BF :contents)

gp’i{ 6“{ FIRST :contents CheckContents BF :contents

Now we must find the words that are the names of procedures...

TO xPOTS :contents

IF EMPTYP :contents [OP [1]

If DEFINEDP FIRST :contents [OP SE FIRST :contents xPOTS BF :contents]
(E)s {;(POTS BF :contents

..and think about printing them:

TO xPOPS :procedures
IF EMPTYP :procedures [STOP)
xPO FIRST :procedures
)E(PgPS BF :procedures
N

POALL Vol 2 No3 page 10

Life becomes interesting here. Given the name of 8 procedure, we want its TEXT, but
we want more then that, we need its name, dots on ary input, and END on the endS:

T0 xPO :procedure

xPOLoop xPOAux :procedure TEXT :procedure
END

T0 xPOAux :name :procedure
IF NOT EMPTYP FIRST :procedure
[OP LPUT [END] FPUT SE “TO :name Dots FIRST :procedure BF :procedure]
OP LPUT [END]} FPUT SE “TO :neme BF :procedure
END

T0 Dots :inputs

IF EMPTYP :inputs [OP "]

OP SE WORD ": FIRST :inputs Dots BF :inputs
END

The list of lists that is a procedure must now be printed, but as we do that we have to
count characters so that the <Return>s can be put in place. To do thet we'll need to change each
line, each sublist, into a word, with square brackets (CHAR 91 and 93) where they belong:

TO MakeWord :object
IF EMPTYP “object [OP “]
IF LISTP FIRST :object
{OP (WORD CHAR 91 MakeWord FIRST :object CHAR 93 MakeWord BF :object]
(E)P (WORD FIRST :object CHAR 32 MakeWord BF :object)
ND

It does put an extra space before Js, but never mind. xPOLoop is...

TO xPOLoop :procedure

IF EMPTYP :procedure [PRINT = STOP]
PrintLine MekeWord FIRST :procedure
xPOLoop BF :procedure

END

..and we finally get to print, the whole line if it's short enough, otherwise one
character at a time:

TOPrintLine :line

IF EMPTYP :line [STOP]

IF (COUNT :line) > 7S [PrintLine PrintChers 1 :line STOP]
PRINT :line

END

TO PrintChars :column :line

IF EMPTYP :line [OP "]

IF :column > 75 [(PRINT CHAR 32 "1) OP :line]
TYPE FIRST :line

OP PrintChars :column + 1 BF :line

END

§ Although this is Apple Logo //. it has been formatted like the generic Logo to make it easier to
read. Remember to type the IF..THEN lines as one line.

POALL Vol 2 No3 page 11

We can now turn our sttention to free variables. The problem here, ss with
procedures, is with [Js:

TO xPONS :names

IF EMPTYP :names [STOP)

LOCAL "name

MAKE “name FIRST :names

TEST NAMEP :name

IFTRUE [IF LISTP THING :nome
[PrintLine MakeWord (SE :name "is CHAR 32 CHAR 91 THING :name CHAR 93]
[PrintLine MakeWord (SE :name "is CHAR 32 THING :name)}]

xPONS BF :names

END

At last, the main procedure, and the RECYCLE is there to cleer extraneous words off
the system object list, otherwise Fred, fred and FRED, a1l the same thing, would be printed:

TO xPOALL

LOCAL “names

RECYCLE

OPEN 1 SETWRITE 1

MAKE “names CheckContents .CONTENTS
XPOPS xPOTS :names

PR"

XPONS :names

CLOSE 1 SETWRITE []

END

We need & list of what mustn't be printed...

MAKE “buried [buried Dots inputs PrintChers column line xPOAuX name procedure
xPOLoop xPO MakeWord PrintLine xPONS names xPOTS contents
xPOPS procedures xPOALL CheckContents)

...and & :STARTUP to put it out of view (before you load or type other things into
workspace):

MAKE “STARTUP [BURYALL}
It works (with the 7S in PrintLine and PrintChers changed to 65 for the occasion):

TO Demo

FR [This is Jjust a3 long line of text +o show what happense wi

th Apple Logo 2, the Super Serial Card and the Imagewrter.,
. C

EtD

STERTUR (= [BURY&LL]

We haven't bothered with property lists, but thet could be done if necessary. But it
would have been muys eesier with PRINT WORD CHAR 9 °C.

POALL Vol2No3 page 12

STOPping in Style
Or: Why Logo procedures are arranged the way they are:

There is a body of opinion thal considers a Logo procedure like this to be poor style:

T0 PolySpi :size :angle :inc

IF :size > 200 [STOP]

FORWARD :size RIGHT :angle
PolySpi :size + :inc :angle :inc
END

Why poor style, even though Logo interpreters are designed to efficiently implement
tall recursion? Because we eventually make a call to the procedure which does nothing.
Better, some argue, is to have the procedure call the new copy of itself only if the value of :size
is less than the limiting value;

TO PolySpi2 :size :angle :inc

FORMARD :size RICGHT :argle

IF :size < 200 [PolySpi2 :size + :inc :angle :inc)
END

Well, one could argue that that is better and more conducive to a clesrer understanding
of recursion. In its possible favour is that it more closely approaches the style adopted in
other programming notations, and the people suggesting a change are ususlly experienced in
BASIC, Pascal, etc.

While that is true, that style is not used by the writers of any of the Logo texts or
references: Abelson, diSesss, Lawler, Ross, McDougall #f &/, Harvey, Thornburg, Goldberg,
Bitter, Merin &f &/ Hurley, Watt, etc., etc., neither is it used by the professionsl
programmers who write the utilities and demonstrations supplied with Logo systems. The only
one of those writers to discuss STOP in this way is Hervey (Computer Science Lo Style .
Intermadiate Pragramming, pp 64..65), and he inverisbly uses the normal Logo style.
Writers such as Watt (Zearning with Lagd) emphasise the importance of devising compact and
effective STOP rules. Abelson is on record elsewhere (Sirwcture and Inisrprelstion of
Computer Pragrams) 8s being vehemently opposed to unnecessary logic and syntax.

I belfeve it only confuses the issue to insist on 8 style not used elsewhere in the Logo
culture . Natursl languages are embedded in their cultures and this is true also of computer
languages, including Logo. Logo has a very rich culture, which we neglect at our peril.

We ought to be applying the razor of Willlam Turtle of Occam, and minimising logic
and code, not adding to it, but for the moment let's see where the avoidance of STOP leads us. In

the case of a procedure like PolySpi2 there is only a little added, but with s procedure stepping
through a list of data the final line bacomes...

IF NOT EMPTY? BUTFIRST :data [Thingo BUTFIRST :data!
...85 we have to test for emptiness before the object is empty. Alternatively, we could write:
IF (COUNT :data) > 1 [Thingo BUTFIRST :datal

and add yet other, less obvious, logic. We don't seem to have gained anything.

POALL Vol2No3 pege 13

What of the fractal procedures so elegant in Logo?

TO Koch :size :level

IF :level = 0 [FORUMARD :size STOP)
Koch :size / 3 :level - 1

LEFT 60

Koch :size / 3 :level - {

RIGHT 120

Koch :size / 3 :fevel - 1

LEFT 60

Koch :size 7/ 3 :level - 1

END

T0 Koch2 :size :leval

iF :level > | [Koch2 :size /7 3 :level
LEFT 60

iF :level > 1 [Koch2 :gize / 3 :level
RIGHT 120

IF :level > 1 [Koch2 :size / 3 :level
LEFT 60

IF :1evel > 1 [Koch? :size / 3 :level
END

11{IFORNARD :sizel

11IFORARD :sizel

11IFORMARD :size)

11IFORIARD :sizel

Again, we don't seem to have gained anything, and it’s unlikely that it reslly helps the
understanding of recursion. In fact, the simple substitution of a recursive fall for 8 FORWARD
:size has been obscured by the IF. THEN.ELSE. As well, the level of recursion hes been
confused. Level O of a fractal/Pesno curve, is the initiator (& straight line) and level 1 the
generator (the actual shape), but that has been lost in the IF ... test.

To be fully consistent, as we should, we will have to rearrange list manipulating
procedures so that they do not make calls with empty inputs. First, the normal version...

TO Remove :item :object

IF EMPTY? :object IOUTPUT (1]

IF :item = FIRST :object [OUTPUT Remove :item BUTFIRST :object)
OUTPUT SE FIRST :object Remous :item BUTFIRST :object

END

...then the revised { which took S attempts make to work):

TO Removed :item :object
IF :ites = FIRST :object
[IF NOT EMPTY? BUTFIRST :object
[OUTPUT RemoveS :ites BUTFIRST :object]
OUTPUT (11)
IF NOT EMPTY? BUTFIRST :object
{OUTPUT SE FIRST :object RamoveS :item BUTFIRST :object]
[OUTPUT :object]
END

Noone would argue that that is clearer and more mesningful than the normal version.
Let's pseudocode the original:

lo remove an item Irom an abject
If the abjact s emply, return sn emply Jist
I the rtem malches the first element of lhe abject
then return the result of removing it from the rest of the abyect
otherwiss, heng on lo the 1irst element, and combine it with the result
of working on lhe rest

POALL Vol2No3 page 14

As they say in the classics, pseudocoding RemoveS is left as an exercise for the reader.
One final look at Remove, in its real original form:

(defun Remove (item object)
(cond ((null object) nil)
((eq ftem (car object))(Remove item (cdr object)))
(t (cons (car object){Remove item (cdr object))))))

Lisp programmers have always used the most concise forms of logic (LISP is crisp,

almost totally devoid of “syntactic sugsr'), and placed the most critical test /inst That is not
only a good, but a necessary model to follow.

There's something else. The style shown in PolySpi2 causes stack overflows in some

Logo systems. Suggesting @ scheme that may cause unexpected errors is hardly to be
recommended.

There is no need to emulate the style of other languages in Logo. Rather, we might ask
why the other languages don't have the power and conciseness we have in Logo.

Yea or Nay

Sometimes it's convenient to have a program stop for a yes or no answer:
Are you happy with that? (Y/N): _

Of course, there are several ways of doing it, some easier than others. Often, it saves

time for the user if <Return> can be pressed alone instead of having to hunt for the Y. Here'sa
procedure that does it

TO BetTruth
OUTPUT |F MEMBER? READWORD (LIST ~ “Y "y)> ["TRUEII"FALSE]
END

It's a bit sneaky in its use of LIST, but you can't have a list like this [" Y y] by simply
typing it that way. To use the procedure (The a represents a space to be printed.):

TO Happy?

TVPE [Are you hoppy with that? \(Y\/MN\):\al
OUTPUT CetTruth

END

You may have good reason not to take No for an answer, and this time we can use
READCHAR instead of READWORD:

T0 Yes!
OUTPUT IF MEMBER? READCHAR Y yl ["TRUEl(Yes!]
END
(/W‘xa.-{ abowut the Turdle? . Turtle falls on man
) ~ HONG KONG — A man has
¢ peen hit on the head by a fresh
< water turtle, which fell or was
= _.thrown from a high-rise resi-
L~"0 dential building in the Wong
7L Tai Sin district. He was not
= - badly hurt.

The Advertiser June st

POALL Yol2No3 page 1S

Nested Polys

Adapted from the pages of 7urtle Geomelry
A commonly used example of a recursive procedure is this one:

TO NestedT riangle :size
IF :size < 10 [STOP)

REPEAT 3 [NestedTriangle :size / 2 FORWARD :size RIGHT 120]
END

With a couple of fairly large steps we finish up with these procedures, They are
generalised so that they con draw any polygon besides triangles, but more than that, they add
one polygon per level of recursion:

TO PolyNest :size :angle :level :totalTurn
If :level = 0 [STOP]

FORWARD :size / 2

SubPolyNest :size :angle :level
FORWARD :size / 2

RIGHT :angle

PolyNestLoop :size :angle :angle "FALSE

END <
TO SubPolyMest :size :angle :level

RIGHT :angle / 2
PolyNest :size * COS :angle / 2 :angle :level - 1 0

EE&)T ndle/2 PolyNest 120 144 3 0

TO PolyNestLoop :size :angle :totalTurn :doneOne

IF AND :doneOne 0 = (REMAINDER :totalTurn 360) [STOP]
FORWARD :size

RIGHT :angle

~ PolyNestLoop :s1ze :angle :totalTurn + :angle “TRUE
END

You can think about the need for :doneOne, and about the recursion involved. A couple
of examples to start you off:

PolyNest 100606 O

PolyNest 100 72 120

é/\
<

POALL Yol 2No3 pag 16
A Game with a name:

This program is just a bit of nonsense, but on the way we take a look at some
interesting list processing. We read a name from the keyboard, but instead of printing it in
its normal form print it reversed and then with the letters sorted into alphabetical order.

The toplevel procedure i3 easy enough although there are several things to be
explained later. The a represents a space to be printed:

TO NameGame

CLEARTEXT

LOCAL "neme

PRINT [1’'m the Logo Genie. Who are you?]
TYPE [Plesse type your nsme\a)

MAKE “name READLIST

PRINT -

PRINT SE [Plesse to meet you,} Reverse :name
PRINT [Oops! | think | had that backwards.]

PRINT SE [Let me try again. You are] Sort Makeword :name *
PRINT *

PRINT [Hmm, that fsn't it either. I'm all)
PRINT [confused. Perhaps you might see me}
PRINT SE [again later] :name

WAIT 600

NameGame
END

Now let's deal with the details. Totally reversing a list can be done several ways,
but this is the ususl one:

TO Reverse :object
IF EMPTY? :object [OUTPUT []]

QUTPUT SE (ReverseWord LAST :object)(Reverse BUTLAST :object)
END

TO ReverseWord :word

IF EMPTY? :word [QUTPUT ~]

OUTPUT WORD LAST :word ReverseWord BUTLAST :word
END

Reverse puts the words in the list into reverse order, while ReverseWord handles
the characters within words. Use your system’s TRACE facility to follow the recursion and
the passing of values.

Before we sort the letters we must change :name from a list into a word, and you can
think sbout the reason:

TO MakeWord :ist

IF EMPTY? :dist [QUTPUT ")
OUTPUT WORD FIRST :list MakeWord BUTFIRST :list

END
e

N LD

POALL Yol 2No3 page 17

Now we get to the interesting bit. The sort we're using is an Insertion sort, and it
works by teking a letter at a time, working its way along the already sorted letters until it
arrives at the right spot and inserting. As with Reverse and Reverseword there are two
procedures, but note that this time there is an input for what will become the final output.
(Could Reverse and ReverseWord be written this way? Try it and see, or try rewriting Sort
and Insert. You might also look up other sorting methods in a8 programming book.) In
pseudocode to start:

lo sort oheracters Inlo 8 ordered word
1T there s no characler, oulpul the word
otherwise Insert lhe rirst cheracter into lhe word and then desl with the rest

o Insert & oharacter inlo & oraéréd word
1Y there s no word left, oulput the characler
17 the characler to Insert comes In the 8iphabet before the 1irst one in lhie word
then aulput the character and the rest of the word
olherwise, fiang on lo lhe 1irst oharacter or the word and work on the rest

In Logo:

TO Sort :in :out

[F EMPTY? :in [OUTPUT :out]

OQUTPUT Sort BUTFIRST :1n Insert FIRST :in :out
END

TO Insert :in :out

IF EMPTY? :out [OUTPUT :in]

IF BEFORE? :in FIRST :out [OUTPUT WORD :in :out]
OUTPUT WORD FIRST :out Insert :in BUTFIRST :out
END

If your system doesn’t have BEFORE? as a primitive:

TO Before? -first :second

IF (ASCI! :first) < (ASCH! :second) [QUTPUT “TRUEJ[OUTPUT “FALSE]
END

Again, you should TRACE how these work. Sort should be straightforward enough.
insert is perhaps more interesting, and here’s a diagram of it inserting r into eqw, part of
the process of sorting qwerty:!

r eqw - EQrw
rqw qrw
Y w rw
Now you can intrigue your friends.

n diagrams like this the numbered circles represent calls Lo the procedure. Inputs are shown down
the left hand side, outputs upwards on the right. As for GWERTY, that's a sad story...

POALL Vol2No3 pag 18

QURRIDNERG AR NG MR
Loose ends...

Dr Alan Kay is the person who coined the term persons/ computsr, was the leading
light behind machines that led to the Macintosh and its visually oriented operating system,
the Smalltalk language, and numerous other ideas. He was recently the speaker at a meeting
of AP.P.LE., the worldwide Apple user group, and discussed three types of learning
symbolic, visualisation, and reflex/motor. No prizes for guessing on which one schools

placs the greatest emphasis, even though it has been shown to be the weakest mode of
learning.

One of Dr Kay's examples was a study:

‘...done with the Logo turtie and three children; one age five, one age ten, and one age 15, Here
each child was in a particular stage of learning development.

The youngest child learned best by touching and doing, the middie child learned by watching
other's examples, and the oldest child was well into reading and studying. Each child was able to
play with a mechanical turtle which could draw on a plece of paper. They were ali given the same
assignment, Make the turtle draw a circle,

The first boy told the turtle Lo move a little and turn a little, the way he would if he had
walked oul a circle with his body. The second boy noticed that if the turtie started at the centre of
8 circle, which he visualized on the paper, and then moved out Lo draw a series of points around the
centre, the circle would be drawn. The third boy was unable to get the turtle to draw a circle. The
controls would not accept x2 + y2 = p.’

(K. Nemilz, ‘Or Alan Kay at the Pacific Science Centre’, in C8// A.P.L.L.E. January 1987, p S4)

Interesting. (Care to write the procedures?)

Coral Logo has appeared in one Australian supplier’s catalogue, although it is not
quite here yet and no price is listed (US price is $79.95). As mentioned in the last issue, it
is an ‘object oriented’ implementation. More on that when we actually have a copy for
review. In the meantime, we know already that it fs good for number crunching, has ready
access to the Mac's Toolbox and s lexically, rather than dynamically scoped. What does that
mean? Key in the following...

T0 ScopeDemo

LOCAL “word

MAKE "word “dynamic
Printit

END

T0 Printit
PRINT :word
END

MAKE "word "lexical

... and call ScopeDemo. Printit is called by ScopeDemo, and therefore has access to
its locally defined vorfables, |f Logo were lexically scoped, it would not have such access,
and would print the value of the globally defined variable. Logo inherited its scoping rules
from LISP, but there is now at least one Jexically scoped LiSP, the version named Scheme,
which 1s also block structured like Pascal, with functions within functions. For more
detatls of scoping, see Brian Harvey's books, or any LISP or Pascal text. It's slways sofest to
call procedures with inputs. That way, there's never any confusion.

POALL Vol ZNo3 page 19

Two other new Logos are on the way. One is a version by Terrapin for the Mac. It
supports multiple turtles, access to Mac QuickDraw routines, multidimensional arrays,

property lists, strings, stream 1/0 etc. etc. The turtles can STAMP their shapes and can
apparently be redefined. Price? $US79.95.

The other is from LCSI for Apples, and to quote Alain Tougas: ‘Apple Computers
discontinued Apple Logo I (which was done by us and produced by Apple). This gave us the
right to re-do it and we did so. 1t will be called /&S5/ Lago // This version will look like
Apple Logo ! and will be sold by LCSI. 1t will have 30 Turtie shapes, a good shape editor and
some bugs fixed. Finally, it will be available around mid-June...and will run on Apple //c,
/le, and //65° Price in the LCSI catalogue is $CDN139 for the single user version, and
multiple copies and site licences are available. Wonder what it does in combination with SSC
and ImageWwriter, but we'll have to wait until a copy arrives.

~ Rumours about & version 2 of MacLogo are incorrect, slthough there Is now a French
version.

Latest to join the control Logo scene is Milton-Bradley, with their Aabolix kit. It
looks 1ike something from long ago in a galaxy far away, but incorporates some very ingenious
engineering The parts fit together with octagonal studs, which give a useful choice of angles,
are essy to put together and are quite strong. Fitted one way, the wheels are fixed to their
axles, the other way about, they freewheel. There are four motors, but only one gear, snd 8
hand controller. M-B make an interface for the Beeb (through user and printer ports),
another is also available, and the whole thing can be driven by Logotron Logo.

The documentation includes idess for class use and an account, with case studies, of
research done with the system as part of MEP work in Welsh schools. It's not as flexible in
some ways as the Lego or Fischertechnik kits, but would be an attractive and interesting way
into control technology. Price? £350 for the kit ftself, £80 for M-B's own interface, and no,
it's not available in Australia yet, but Ralph Leonard is working on it. If you want to see it,
give Ralph & call at Angle Park.

Advertisements:
Thinking Logo
An Introduction to [the Universe through] Programming
by Peter J. Carter

Ostensibly a text for the SSABSA Year 12 Computing Studies Course, 74mnking Lo
has information, techniques and ideas for anyone who wants to learn and use Logo.

Reviewers say. ‘A delightful stroll through Logo.' (R. Green)
*...aclear, logical educational treatise... encyclopaedic...” (H. Hyde)

$9 ($10 posted) from the author, 28 Rowells Rd Lockleys 5032
BiKiLog

An informal group for Logo users fo discuss, play with, argue about, and rave over
Logo. BiKiLog is & SIG of the Computers in Education Group of South Australis Inc.

Yenue: Microcomputer centre, Magill Campus SACAE , Lorne Ave Magill.

Next Meeting: Monday August 10 th, 7:30 pm

