POALL

A Journal for Logo Users

Conference Reports

Velume 3 Number 4 Mevodber 1938

This issue is largely devoted to items from two conferences, ACEC '88 in Perth. and the first state conference of the Computers in Education Group of South Australia. October 28.30 th. We have brief reports of the ACEC papers, and the Logo paper presented (?) at the CECSA conference. LECO/Logo was much in ovidence at both ovents.

As well, vo have an article on the dovelopment of some list processing functions by Poter Mitchell, a reviow of Turtlo Confusion, one of the most intriguing Logo books ever published, and a few other things.

By rights, there ought to be another issue by the end of the year. We'll need another 15 or so pages to make it.

2 Papert's Vision
8 ACEC '88
11 Turtio Confusion
13 Jumbled Letters

17 The MIDI Turtle
18 Dirty Tricks Department Revisited
19 Computing at Entropy House
20 The Back Page

Papert Vision: a promise fulfiled?

Abstract

In my vision, the coilld programs the computer mad, in doing so. both aquires a sense of mastery over a piece of the most modern and powerful technology and establizhes an intimate contact with some of the deepest idens from science. Irom mathematics, and from the art at intellectual model building: (Mindsforman p 5)

That is the promise of Logo, children learning, not by being 'taught' but by exploring the ideas for themselves, by dissecting and reassembling, in the form of Logo procedures, problems in science, mathamatics, language, art, music, the whole gamut of intellectual activity. But has the promise been fulfilled? Can and do students learn these things with Logo? What is the current state of Logo and its results?

Let's start with brief looks at some explorations with Logo, beginning with science Biology may seem to be an unusual topic for Logo, but two examples. The first is bsed on Richard Dawkins' program described in The Blind Watchnmaker, a cogent explanation of evolution. the only known theory that could. in principle. solve the mystery of our existence."

The program is built around \& fairly simple Logo procedure (Carter. 1887):

```
T0 Eroe :gmex
IT EHPTY? :gemes [STOP]
LEFT FIRST BUIFIRST :genes
FOmald FIRST :gemes
ORON BUIPIRST EUTFIRST :genes
BACX FIRST :geDes
MIGTH 2 * FIRST BUTIIRST :genes
FORWARD FIRST :genes
ExO BUNFIRST BUXTIRST :genes
BACX FIRSY :geners
LEFT FIRST BUTFIRST :qenes
END
```

As you may gather by the variable name, onem. the procedure is given a list of values which can be selected and mutated by other procedures. As the generations proceed so the 'organisms' evolve. The picture below shows something of what can happen through eight generations, beginning at top left. Students can play with evolution at first hand. (If we are built by cells following genetic information, does that mean that we are simply information processing machines?)

The second example may have particular mebaing as we face the AIDS problem. What is a virus? how can we deal with them? Again. the Logo looks innocent enough:

```
T0 Firwe.0 :generation
```



```
POR8
```



```
ER mORD "Firus. :gongration
```



```
En
```

What is really doing the wort, the procedure itself, or the Logo interpreter acting on some data? There is a real issue here. What is it that is replicating? Surely the procedure, a few lines of code. cannot be mating new copies of itself can it? To go a bit further, would it be possible to make machine that could build new copies of itself, in other words, is self-replication possibio for machines? (Some would argue that plants and animals, including oursolyes, are (biological) machines, and that that vould answer the question.) In the 1901 sand 1950 s John von Neumann argued that it was logically possible, and even proposed self-reproducing machines to explore the universe. He and Stan Ulam devised computer 'zames' that generated self replicating patterns, games which evolved into Johio Conway's'Lifo. To explore that. I would recommend Brian Silverman's Phatona Chis Triat a Turtle-less version of Logo for working with cellular automata.

What about an antibody to the viras?
Let's move to mathematics. In Mindstorms Papert (1980) writes of 'mathophobia', the intellectual disease which prevents people learning mathematics (and other subjects). As a mathophobe myself. 1 have found in Logo a way to approach many things that were formeriy on forbidden territory. Mathematics, at least in the form of logic, is inherent in overything in Logo. But one example here. What Mandelbrot has named fractals were once in the 'too hard basket' of mathematics, the 'monsters'. We can now readify play with them in Logo:

l leave it to you to write the procedura.

Abstract

Perhaps fer vord about Comphing Sindies, sioce lug is a approved language are in order. What is it we ate tying to teach in Congthag Stwhes? What has word processing to do with computiag, or databsess, or spreadshects? Who cares and structured programming? Why teach Pascal, full of syatax and semicolons, in schools, when Logo is more powerfuland ensier to write amduse? Werg does hogo fit into this? One view is enpressed by frina Harvey in his ocmputer Scicare Logo style series, were he describes Pascid compiler writan in lono Wy arn triev is in Thinthachgo. from which ! tate one exumph


```
W4U
```



```
ExD
```



```
5%
```

I suspect that Weageabus (197\%) was right when he wrote of cowputer science graduates as being "... ather lite people who heve somehow become eloquent to some loreiga language, but who, Then they atempt to write something in that language, find they have literally nothing to say. (p 278) We ought to be emphasising ideas and their exploration and expression, not merely techniques and technicalities.

What are the deepest ideas from science, from mathematics...'? Are they simply things like Newton's laws of motion, Cartesian coordinates, and the like, or is there more? I would suggest that warking with Lago involves immersion in the scientific method". Periaps more cham scieace itself as it is presently taught, Logo involves more of the hypothesisiag. testing, verifying and falsifying than takes place in the faboratory. A Logo procedure is simply an expression of an hypothesis, a possible way of solving a problem. If it woriks, fine; if it doesn't, the hypothesis must be revised or rejected. Poppor, Listos and Euhn are the people who wrote about this sort of thing.

Perheps the boldest claim by fapert is the one about intellectual model building, and the transfer of learaing and stills to other subjects. It is the assertion most discussed and disputed by researchers sad writers, and any atiempt to survey the field in this brief paper is doomed to failurt. Essentialiy, however. there seem to be two camps, one critical the other supportive. The chief critic would appoer to be Roy Pea, of the Bant Street College of Education Paport himself, and writers like Hervey. Lawler. Solomon and Wer represent the advocules.
in a paper presented at ACEC '88, Wing Au of the University of Newcastle presented the findings of his own research (Au and Leung. 1988), commenting 'It would appear that many researchers have failed to faike into account the type of teacher intervention provided in a Logo environment.' I have always been uneasy with research based on a month or so of introductory logo. followed by tests related to an entirely different subject. 1 doubt if Papert (following Piaget) ever believed that Logo was anything other than a long term proposition, needing years of use by a student to develop the real benefits. In contrast to others, Au and Leung carefully describe their interyention, ie teaching and their testing and repart beneficial effects of Logo. They also stress the important social aspect of learning with Logo, the need for students to be able to freely discuss what they are doing and stare ideas. and the need for the teacher to take an active role

 useful

Au, W. and Leung, J. Transfer of Protea Sotwiog in logo Programing' in Ap, P. (Ed) Goldon Opportunitises LCAWA, I 88

Clements. D. and Gulio. D. Effocta of Canauter stasmming on Young Children's

Fay, A. and Mayer, R. 'Children's Newn Consatations and Confusions About Logo Graphics Commands' in Journalof Ehcsident herchorgy Vol 79, No 3. 1987

Mayer, R and Fay, A. A Chsin of Cogninve Chates with Learning to Program in Logo in Journal of Educntionat Psycholog. vis 7e Mo 3.1487

McMillan. B. 'Logo and the Teaching of Loge: a rageian perspective' in Hancock, J. (Ed) Tomorrow's Tachnolony Todey Crusa has?

The main papers by Pama incueded int book Mirrors of Minds listed below, and of course the list is far from whanstive. What is the overall view? I think it tends to be positive, aad certainty peopic the Ôplvis Jeir and Robert Lawler (see below) report positive benefits

Logo has been described by sume ast tha "Low Laina", In contrast to Latin, Logo is a living language, with an active collara to more than just grammar, it has the power to make things happen: Turtles nave, $L E C O$ machines operate, language is processed, music plays, the thole cathedret of computing is active. We may not yet have classical Logo literature but we do bave hively, socinl learning environments. I don't remember that from Lecamys.

Abstract

About Logo there las grovers gumener of mybs: that it is a 'toy' for little children, that it is just anoimer hangugg lite hased ar BASIC, and so on. The truth is that it is a very effective system in the right hands. a powerful language in a powerful culture. Logo is not essy, it is intellectually demanding; it would have no point othervise. You can leare the ssamtidg of a wordprocessor or pactage lite Priat Shop in an hour or so, it will probahigy tale a year for you to be sufficiently experienced and aware to be able to bogin a usa Ligo offectively. But the rewards are much greater.

Logo itself is changing. If you've only avar seen the original Apple Logo or Commodore Logo, take a look at Logotricer mid Moo TC logo. These versions work in a much more natural onvironment, sand in the case of Logow riter come with a range of excellent teaching materifis. Woo logn is a whole new field in itself.

Let me conclude with a brief list of some racent or significant books:
Abelson. H. and diSessa, A. Furthe Gwasoley BIT Preas. 981
This is not a Loge book, znd the progrmming examples are not in Logo but
 Abelson and diSesse explore geamery the the wa relstivity. Turtles are not trivial.

Clayson, J. Visual Alodeling wiat Lago Mry Press. 1984
Clayson is not a programer, but ad athst, nad lago as atarely the vehicle for his explorations of the visumi. In quotiag Constabie. Clayson asts 'Painting is a science and should be pursued es ina inquiry into the laws of aature. Thy. then, may not landscape paintine be considered as branch of natural philosophy. of which pictures are but the experiments?
 A grammar book, wery differen one fron all athers. Goldenberg and Feurzeig explore langusge by geacrating words and phrases using Logo procedures which incorporate gremmotict rules. The Logo procedures become wortiog models of hanguage an thetic and abstract rules

Harvey. B. Computer Scieace Lozo Sitye (Three voimmes) MiT Press, 1985.1987
The three volumes mre subtited. foteranediste Programaniag Projects. Styles, sad Techniques and Adrasaced Topics The first is at about Year 8 . Year 10 level. While Advanced Topics is nuxad ai tertimy level computer science students and demonstrates a clear and withle aternative to the software engineering approact to compuing. Anyone msing Lego in secondary schools should have at lesst the firs wolume.

Hurley. J. Logo Physics Holt, Riaehar and Winston, (1085
Turtie as a projectile, cosmology, brigger, rainbows: physics experiments as stimulating simulations

Lawler. R. Computer Erperience nad Cognitive hervelopment: A Cuild's Learning in a Computer Cullure Elis Horwood. 1885
Based on Lawler's PhD research, the book detnils the work with Miriam, his daughter, as she worted in a Lago emvironment. Reviewed by Prof B. Inhelder as The first highly conviacing syathesis of cognition science and genetic psychology.

Lavler, R. and Yazdani. AK Artalcid hathigence sad Fotucation: Volume One Learning En vironments tad Thtoring Systems Abler Publishing. 1987 A collection of papers, including some of Lswler's own, on Logo, intelligent tutoring systems and the like.

Newell, B. Turtfe Confusion Curricisiun Developmeat Centre, 1988 A book of Logo puzzies and related riddles. Perbaps the most unusual Logo book you have seen but definitely one of the best.

Pea. R and Sheiagold. R. (Eds) Mricoors of Minds: Patterns of Experience in Educstiona/ Conputitg Ahlex Publishing. 1987
A collection of papers, including a number critical of Logo
Silverman, B. The Phantom Fish Tient [CSI. 1987
A version of Logo for exploring celfular automata, beginning with Convay's 'Life'. Cellular automate mre finding uses it many areas of research, and this package is an excellent introduction. (Far Apple Il mechines only.)

Solomon, C. Computer En vinonaments for Childon hit Press, 1986
Cynthia Solomon was involved in Logo almost from its beginnings. In this book she compares four computer eavironments for schools, those of Suppes. Davis. Dwyer and Papert, concludiog that lago is the most appropriate.

Weir, S. Cultivating Minds: A Logo Cwgehoof Rnaper mad Row, 1987
Sylvia Weir has also hod involvement with loge from its early days. She describes a number of instances where Loga was instrumental in enabling children with disabilities to leara, commanicate and take their place in the community. Her work with mutistic chidren is particularly interesting. Here, clearly, is Papert's vision realised.

There is one final thing that must he said: Do not attempt to develop your use of Logo in isolation. To do so, as in many fields, is to run the danger of stagnation. Besides resources like the books listed above, there exist local journals and user groups which are in being to communicate and share ideas. If that sounds like a 'plug' for POALL and BiKiLog I wake no anology. Lago is not just a programming language, it is a culture, and cultures are people.

References (not listed above)
Carter, P. J. Thinking Logo 1987
Dawkins. R. The Blind Fatchnater Longman. 1986
Papert. S. Mindstorms: Childrea, Computers mad Fowerful Iocas Basic Books. 1980
Weizenbaum. J. Computer Fower and Hixacn Reason W. II Freeman. 1976

Australian Computers in Education Conference 1988

 brief acraunis of the Lago papers and poster sessions.

jeff hame: 'Beyond Turtles and Houses'

The preseniation diverged somewhat, deliberately, Irom the paper and concentrated on drawing sad recursion at diferent levels. The paper dewls with the
 is a poverful general purpose lan

A the Primary level, the stress is on programming priaciples: structure. precision in use of the language, had mathenalicai principles. At be Secondary level. cmphasis is still on siruchure. bogethor vith the use of variables and the passing of parmeters. while for tertiary sudents there are aspects line topology. statistics. numerical methods, diferential calculus, and recursion. The latier was much in evidence in the presenition with demonstrations. on ORP and Logotron of the Tower of Hanot as wetl es some interesting wrees.

Another point made by banes is the aeed for sudents to have goals set for them Three seta of procedures, bicycle picturt, graph drawing system and a converstional program are appended to the mper

Pam Gibbons 'Procedurailty, Modularity and Problem Structure: Introducing Logo through Music:

Pem Gibbons came across the problem that most Logo using teachers face at some stage students typing yery lont lines toplevel, and avoiding the use of procedures. Gibbons smanines some recent literature on the probiem, concludiag that strucured problem solving is acither instinctive nor inevitable.

Her solution is to use mustic as the modium to introduce Logo bo Year 7 students. in the following sequence:

1. Play with the TCOT primitive. with arbitrary numbers (pitches).
2. Play with s sequence of Toots.

3 Use real note frequeacies.

- Try to produce a tune in immediate mode. Given the limited length of an input line the une will be very short)
- Define procedures for notes: 10 C

$$
\text { T00\% } 52330
$$

EMD
6. Use the note procedures in immediate mode.

7 Define procedures for phrases and songs.
8 Produce medleys, rounds 'mudleys' (ie phrases from various unes) perhaps with variables and recursion
The prouression was demonstrated, onding with Frere Jaques played as a round on two Apples

Gibhons sees a number of advantages in the method:

1. There is an intuitive breaking up of tunes into phrases and notes
2. Only one primitive. TOOT, is involved
3. Immediate mode is very limiting.
4. Long procedures are almost impossible to debug, encouraging short ones.
5. Ideas will almost invariably be present

6 Cooperation is encouraged.
7 Dooding and happy accidents are minimised planning emphasised.
8 Muse has obvious hierarchical structure

In closing. Gibbons omphosises the whe ef the bacher, particularly considering that early axperiences may well set whentara for learners continued approaches to problem solving

Paul Dench 'Logo Shells'

Paul is a member of the Conputers in Fhicalion Prober Tan of the Ministry of Education. He has developed shell progems to allow chidrea to develop their ideas within a prepared framework. Decause the shidrea's procedures must fit the shell. they must be written in a struchured manare, sad mot the rales for interfacing with the shell. Such a system imposes obvious consconats fae on the othor hand supplies the 'house keoping' procedures ready mende.

Paul demonstrated two completed propects. a hambuger maker and a train builder. The first presents a menu for the hamburger and its bun: meat, cheese, lettuce and tomato. As each item is chosen it is drawn. and afler all are in place the bun is completed, complete with randonly sprinited sesmone seeds. The train buildor allowed a choice of colour for the loconotive (steand but with a whiste from a diesel). and a range of rolling stock and cargo. Both drew yon pictures and had been writton by Year 6 and 7 studenis.

Paul also briefly demonstrated the beginategs of a sentence building program for use by Aboriginal students. The gratame of he Vasari language is rather different from English, for instance, word ordex is fargely irrelevant, and the program has to add the word endiags demathishing natiocts from objects. Although the graphics were not yot included, whe progrexa remiuded ne somewhat of Story Machine

Wing Au 'Logo Programming and Metncognitive Training'

This papor investigates the ixpocrian isme of transier of training from the Logo environment to other subjecis. This has atways beea the contentious aspect of Logo, so much so that for some time thore beve been two camps, one, following Papert, believing that transfor exists, the other, exemplificd by Pea of a/ asserting that it does not, at least in any measurable form. Tut the argument exists should not be surprising. Rarely do researchers adequately sescribe their intervention (teaching methods), evaluation, and the test instruments used.

Au is more careful, describing how the subjects (children in Hong Kong schools) were in three groups, one using a Procoss Approach, the second a Content Approach, and the third what amouatod to bitus more than a Logo typing course.

The Process Oriented Approach involved thres saspects:

1. Structured worksheets: a graded set of esercises and instructions, generally following the conventional graphics appronch to logo
2. Teacher questioning
3. A socially interactive and reflective enviromment: With students working in pairs the social aspect of Logo, regarded by some as one of the most important. was enhanced; children learn, not so much by the actual programming, but by the interaction and discussion

Overall, children were forced to think sbout heir own thinking, aided by guides lite this (adapted from a papar by Belmon wad butterfiold)

Three measuring instruments vere used by Au and Leung

1. Raven Matrices: A system of non-verbe prothern matchiag ezercises
2. Tower of Hanoi: Au demonshrated this with a model, and charts of the scoring system. The students practised wih a 2 bisc tower ad were then tested on 3.4 and S disc towers.
3. Rule Learning Task: This tast involver a set of cards with particuiar patterns of spots. The children had to tetermine sat rutes govorning the cards.

Au and Leung found that members of the Process Oriented Group. children who had used Logo in a socinfly active environment and bad been encouraged to think about problem solving processes. sconed better in the Tower of Hanoi test than students in the other groups. Differences between the groups in the Raven Matrices and Rule Learning tasts were aot sigailicant. Au and Leung conciude that problem solving stills do transfer from Logo to other tisks, but that the Logo needs to be used in a process-oriented environment thet focuses on metacognitive training.

Unfortunately the paper when ponrly edited for the proceedings, and several lines are missing in various places.

Renato Schibeci 'Logo in Pre-Service and In-Service Teacher Fducation'

The paper is an account of Logo courses at Murdoch University, and describes the attitudes of the students before, during and after their exposure to Logo. Overall. they were favourable at the end. feeling that they had learned something of computers in general. some principles of computer programming. and more importantly, something of their own and others' learning styles.

Schibeci believes that perhaps the ast important thing the students learned was what it is like to be nowice, and through that to be sympathetic to their own students difficulties.

Peter Carter 'LEGO and Logo, the bits between'

LEG0 and Logo can bo understood and used at various levels, from the TALETO of TC Logo for primary age children to bit twidding for senior secondary. You read most of it in POALLVol 3 No 1.

Copies of the Proceedings are available from:
Educational Computing Associstion of Western Australia
POB 10
Mount Lawley 6050

Turtie Confuston: Logo Puzzes and Rodies
 Barry Newell, Curriculum Development Cenire. Cabbern

A Review:

Most Logo books fall into er range, from the simple 'recipe' books at one end to Brian Harvey's Computer Scieace Logo typio sories at the other. Turtle Confusion lies well outside that contiauva, 盎 contains so phe logo procedure, and virtually no explanation of Logo systebas at all, yst perbms fere then way other Logo book since Mindstorms it reaches th he wery beat of ha lege orperience.
 puns?), it highlights the purpose of the wook: to stimulate, oven provoke, interest. discussion and discovery. Perbsps Newell's own words express is best:

Abstract

 life we cannot avold bsing conlused evary now sad blom. A fealinif of confusion is an indication that our understandigg of a given stivation is inodeqgytio..in other words. confusion signals a chance to learn.

Adults should recogntse the dunger of shthintrag yurg peogle from fealings of confusion. cope with, and even bendit from, centurion: 10 eifow fiow to develop reaponses, other than panic.

I cannot recall ever reading the Dagatiat term 'equilibration' in any Logo book, but that is, after all. what 'debugeing' is; waempectedy finding weak spots in one's understanding and rebuiddiag the cognitive structures with new information. Readers of Turde Confusion will be doing lots of that. Newell bas set out to provide ample opportunities for equilibretion; leanaing by examining, discussing, thinking about and the all importane debugenn of soluions w the puzzies and riddes.

There are no mswers. As the Turtle says on gage 38, 'there are no answers in the Book of Life', so readers are forced into edopting the methods of science and mathematics, devising hypotheses (Logo procedures) and testing them, and then never being certain. Thereia lies a dificuity of courso, and this book will not be well received by people who wat everything cut and dried, or who believe that all computing in high schools should bo based on dinf processing. The book has greatly frustrated some of my students who hime clearly been 'spoon fed' in the past. It is perhaps a reflection on ine state of science and mathematics education that a book iike Turtle Connusion is needed.

Most of the book is in the forg of a dalogne hetween the Turlle and the author, EBN, reminiscent of the dialogies wotween Achilles and the Tortoise in Hofstadter's Godel, Escher, Bach. The dialogues are lively and varied and are the ideal way to present the riddles which are an imporfatit part of the book, relating as they do to each other and to the puzales. The first can serve as a sample:

There was a young student named nyutle.
Who tried to converse with the Turtle,
She later said, "Guys,
The scales fall from your eyes,
When you clear the homology nurdie,"
In my experience, young childrea chear the hurdle without realising it, but secondary students, for whom the book is intemded, together with their parents and teachers, are often like Bucephalus, aftaid of their own shadows and unwilling to take the leap. To help with the ridsles, Nowell rocommends that students have available a
dictionary. atias, encyclopmedis and a modest collection of clessical iterature.' One of the riddles is enciphered. I used couple of Logo pracedures to help with the decipheriag so that I can now read it (But hat doesa't mesa that I understand it yet).

The forty puzales are all fairiy straightiorward. Id didem all in one evening. hardly the way the book was meant to be used. Nowell amphasises group work and discussion. The puzzles begin with a simple (?) square and ead with patterns with multiple axes of symmetry. They relate to sach other in often subtie ways, and in many cases a procedure for one can be used as the basis for mother, and there are clues to their solutions in the text and riddles. Most of thest can be done in a number of ways, and, interestingly, none of them requires rectraion. Several require careful planning and use of subprocedures. Nevell points out that there's nothing wrong, at least at first, with 'brute force' solutions but that the neat and elegani should be the eventual aim.

Newell is an astonomer at Mount Stromlo, fheat in Fortian and active with Canberra schools through the ACT Schools Authority. His book reflects a commitment to change science and mathematics edicetion to the point where students understand, not because they read about things or watch predicuble experiments, but because they are active researchers themselves. That has always been the real purpose of Logo, and Newell's book is a vaiusbic tool to help develop the wital stills of problem solving and research.

As the Turtle says (p vii), 'You cta regard the whole boolet as one big problem. He might have added: 'a thoroughly fascinating and rewarding one

Turtle Confusion: Logo Puzzies and Ridolles

Newell, Barry

Curriculum Development Centre, P0 Bor 34, Aus Cypital Territory 2606
ISBN 0642332710

Jumbled Letters

Abstract

 procedures work. A similiar approach, natyrally chough, is very useful in explaining how recursive procedures and oporstions work. In working on such material, I was side-tracted into thinting of a mate, con such mactivity. Playing 'procedures'. Words and List. And so came the theught of writiog a procedure, Jumbled, that would actually jumble the letters of an input worti. Vorting on the tastr. was interesting as it led to the use of procedures copertionsh haw env very similiar to Logo primitives, and yet I am not aware of any similiar procedures being mentioned elsewhere.

The procedures themselves turast out he be vary interostiag. Did they lead to a name for the playing. Nol But not to warry, as the task was wry usefu!

Analysis

 the word, and giving to it, a new position, ot ration, in the new word to be formed. The second method is essentially the apposite stralegy. Get a leter at random from the word, and place it in at the end of the aew word that is to bo formed. So one method, starts with the letters of the known weri. The other looks at it from the positions of the new word. While I was inilially wtracted ta the first stralegy, I settled on the second because it reminded me of we zone wher programs I had written before.

Design
The primary strategy involved is to select a lettse, at random, from the word, and place it onto the new word, and to contiane until all letters have been exheusted. In selecting a letter from the word, and placing it oato the new word, the letter vill need to be deleted from the known woru. Uning tais strategy I started to think about the commands at my disposal, amely:

FIRSI	gutiless	2TEs	㯭綰	MurLast
Rhmod	\%ORD	EPVI	2478	

I thought about having a random number, that would be determined by the length (or count) of the known word, tokiag the item of that number in the word, and putting it into the aew word. But there was also the task of deleting it from the list. As there would be two steps required, I decided it would need to be stored. I thought about a command, Butiten so hat Butites "ABCDET would delete D. leaving ABCETP

So the primary lines required would be:

- KKEE the random number $1+$ RakDon of the COUHT of the known word
- WORD together the letter of knownword at the random number position and the rest of the word, Jurabled.
- The rest of the word Jumbied, would involvo Butiten using the random number as an in put and the haowa word.
- The word that has been formed to be cuiput, so that gumbled is to be a function, to be used, for example: PRIMT Jumbied " mitchell

1 decided I really needed some wois. Usisg the tarm ButItza was of course
 command Firsth, that woud be lite E LeSt, but atso use the aotion of ITEH The idea

 seemed natural enough. There actuelly ant a need for ell four). Buticam would

Firste will therefore be function with wo inpuis, oac a number, for the
 : object. The first letter will need to be peeled sff : object and WoxDed with the rest of the appropriate letters from : object, in a simitiar manner, up until the nth value. Having peeled off one ietter, the nth position for the next generation of the word is
 Four of ABCDEFG). Ifirst of all peel off the A, pise it in the new word, nad what I

Of course, before involing bis precess i beed in consider a stopping condition. That will be when n is zero, under the recursiye action of the biove process. When that occurs I will wat nothing to be output to the WRO being formed. So in many ways. similiar to other procedures that use liss or words. with OUTPUT, the following function performs the required tass:

```
T0 Firstry :m :object
```



```
EmD
```

 of the preceding function yourself. See ir you cen also create Butfirsin and a Buthast, so they would perform the following:

Pr1\%		displays	${ }^{18}$
PKIE	Lasti 2 " \quad DCDEFG	dispiays	F
PRIE	ButFirsti ${ }^{\text {a }}$ AOCDEFO	displays	EFO
PIU		displays	ABCDET

IIrstM and LastN with appropriate inputs, can really be used for Buthasta and ButrirstM, avoidine having all four functions. For example, if $: n$ has the value 3 stored, and :object has "ABCDFFG stored: then PRIMT ButE 2 sisth : n :object displays DEFG, but PRIMT Lasth (COURT :object)-: n :object also displays DIFG because, the COMfT of the object is seven, minus : n. which is three, which in turn gives four, and the last four lotters are DETG.

Pseudocode

define the function Jumbled with an input objcat
sel up $\&$ LOCAL parizble "rand"
test IF we object is empty.
if it is then OUTPUY sothing
otherwise.
MARK ERE rand" the RANDOM of the COIINT of the obj
OUTPUT the MORD formed by the fetter st ITEM position rand" of object, sad the rest of the word jumbied, which iavolves recurciag to Jumbled with input walues Buitten and tae object

```
        Define the fluaction Butlem with inpuls a suad object
            MTPUT the WakD formedtby the First (a-i) lethers of the whiectand the Last
                of the letters of object, attercuined oy whe input walue (COUNT object)
                -a object
            *g/ine the function Firsti with inpute nonat wbjers
            *)
                    if it is then OWTPUT noching
                othergise.
                    OITPUT we WODD fomed by Lac FHRST lefier af the object
                    first (a-/ilituers of ibe wblect shout is firsm letter
                    #ie. BUTYRST:object
Similarm
            define the Innction LusN with inputs n and odject
            cos IF In is0.
                            ifit is then OITP苂 nothing
                otherwise
                    OUTPUT the WaRD forcmed by the last (a-1) Hetters of the object
                        Withowits gst water (HUTLAST object, mad the LAST
                            fetter of we woject
O4
                FO Jumbled :objeot
```



```
                            ; [P. TALCDN11 Dctober [908]
                lochm "ramd%
                If EHPTY% :object \OURTMT " 1
                MAKE "ramd 1 + RAMNOC COUNT :objnot
```



```
                EDD
            %a Satiten : I :object
            [buts(deletes) the 比\ Itea frow the :object]
```



```
                    8
```

```
PT Firsta ; : objoct
```

PT Firsta ; : objoct
Ireturn the sirst a letters of the :objmotl

```
    Ireturn the sirst a letters of the :objmotl
```



```
N
```

N

* Lest⿱⿱亠⿻⿰丨丨丷一日
* Lest⿱⿱亠⿻⿰丨丨丷一日
Iretarn the lest a letters of the :olymotl

```
    Iretarn the lest a letters of the :olymotl
```



```
TH
```

```
TH
```

B your Logo is without a comment primitive you＇ll also need this one：

```
70 ; :00%3ms
EDD
```

Validavon
PeTMT Jumbled＂ABCDEFG validates．

The following procedre also ativetes:

> Wo Dway

PRET Jumilad mutorat
EXI
 exampic 10000000000

Bvaluation
It is interesting to reflect havine solved the problena, and having completed the program, on the initial thoughts tad strategy, 解en first dealing with the task. I was intent on starting with esch letter of the word, giving it a random number, and hence position, in the new word. Now 1 find tif dificult to even understand that approach. as the strategy that was aphied is so easy wnd straght forward. And it also is interestiag. because in all of the Logo reming l have seen. heven' come across procedures like Firste anduage

On the other hand, a procedure (or function, called Pick, is very popular, in Logo material. The procedure bas been usod by may people, and crediting the first to use it is questionable. An eariy user (and athor?) was Hal Abelson. The procedure picks an hem from an object at random:

```
T0 PLok :objuot
OUTYET TFEM (1 + RAENOR CONET :objeot) :object
EWD
```

Initially I contemplated using this fuaction, but becarse I had to both pick and then delete the item. I needed a slighuy more invelved strategy.

What about a operation (procedure (fanction) called Putyen (or Iteuput)?
The tools developed here could certainy be used in wariety of ways, such as creating larger program thout jumbled words, to be used by a teacher, with students. Another use of these tools, would be in a conversation type program. I'm sure you can probabw thin of other uses of jumbled words

Gyercise

Create a program that jumbles a who informs the user of the number of letters. the first correct letter, and the jumbled letters; and then allows the user to enter guesses at the correct word, until the user either correctly enters the word, or enters the letter $\$$ by itself.

Editor s Note:
PirstM and Jumbled exist as plece atod shut le in Dr Logo (see Vol 2 No 4. p 14) and PutItem is SETITEM in AcoraSon Logo for the BBC. PutItem/SETTTEM isn't hard to write, and it's set as an exercise, as Insert (with Delete and Replece) in Thiaking Lago (p 54) with the comment could be useful tools at some stage

The procedures Peter hes described are avaitable for downloading in the BiKilog section of NEXUS.

Send in the jumbled vord gussing game you create for publication in the next iswe of PDALL

The MDI Turve

Abstract

The nivent of MID systems opens up 5 hedd of Lego cypioration the was never atogethex satisfying before Most logo nicros bave some sort of soun generator buill in but the Apple，for instance，sounds ditincty primitive．With MDI，the whole ranger the synthesisen is avsilable

We it need mme MDI driver procedures，nad these are writen for the Passport interface in slot 2 of an Apple．Other systams will be simiar．This is not the place for a MDI whrial，but in brief，MIDI command consims of status byte followed by one or two data bytes．For thstance，to hurn a nots on we send the code for note on， followed by the number of the note（Middle C is 60 ）and tha code for the note velocity． （Our Casio MT－600 simply uses the default vilue of 64 for the an velocity and 0 for off．） The codes are．DEPOSTTed in tura into the interfacos smemory location．The Reset procedure is to initialise the interface proset to change the tone of the instrument， from pimo to organ or whatever：


```
TO Matwt
```



```
    #EFOEI" 45320 17
素教:
```



```
    MKO$2亚49321 44
    04%051% 6%321 :mok,
    MROOST⿱⿱卄一日儿心}495216
s%
```



```
$y%
* 02y mime
    .32P0s缼19321 125
    WENOST 493n1 : %ob
    MEPOETY 493210
Em
```

```
70 Mag : wote axucim
On : note
*uy%:durtcton
04*:duretton
5%D
```

As described in Vol 2 No 4 of AOALL，Colin Foy and Ursula Gomilschat developed a sysuem nalagous to a Turtle moving．In thair scheme．Turte moves＇forvard＇by singing an ate，and wras righ and left by raising or lowering the pitch．The pitch Gave（MID number）is stored as a hres varible．A few more procedures：

```
T0 ID : momltones
```



```
*)
%o metytck: note
*K" "yitoh : nots
##
70 lomm:suntomen
*解 "iton :pitoh - : wnitones
8w
%0 mast :duration
```



```
SEN
```


Wustc now becomes a list of instructions to the singing Turte

BU (tun
and you can try changing the preset tones of the instrument along the way， remembering to sotpitch before you start．This Turtle is fond of serial music（its Total Trit is not 360^{\prime} but 12 semitones），and you can write procedures to turn tume
into an inversion or retrograde es a list processing exercise. You cad use procedures instead of the list system, but \&ey are aore diffictit to manemuate

Another possibility is musical fractals:

```
T0 tucictree :4urtion: wn ucnn
IF :duretion < 10 [sT0P|
Slug :curation Dowra :40,n
torictre :darmion/2 :vp dosm
UP :xy : down
tusictree :duration/2 :m :Mom
Dom : domn Sing : Cumbtion
H2D
```

Try it with 3033 as inputs. All good fun. and a nsefully different way of exploring musre

Dirty Tricks Department Revisited

If you are plagued by students who are more interested in reading your demonstration procedures than devising their own, here's something to help keep them hicden:

T0 xpors	20 mpots
IR lam the same to you.l	PR [9e're not P0\%ty.]
Em	ETID
TO mPOALL	P0 xin : procedras
Ps [A jowrul for logo neers.]	PR [ED's exy today.]
EW	ERD
70 \% ${ }^{\text {cis }}$	W0 swo procedure
	PR [60 0wty]
COPTIEE "EPOTS - POTS	5\%
COPYDEF "xPOPS -TORS	
COPYDEF -xpOALI *POSLL	
COPYDEF * xED ED	
COPTDEF - XED "EDIT	
BUEFALI	
EDI	

As shown here, they're for Apple Logo // and/or LCSI Logo II, but they will work in any Logo that allows for primitive redefinition and burying. Of course. normal editing is disabled; the best way out of that is through the use of EDITF ILE.

Abstract

Its time manufacturers and supplergegere reatistic wout the netd and finances of schools. One school recenty tought 16 wey Macs and wanfed a lago to use on them. The first problem was 'which one? There are at lesst four: LCSi/Microsoft Maclogo, Coral Object Logo. Terrupin Logo and ExperLogo. The last named is rather Lisp-itite, functional, Terrapin Logo doesnt seem to be readily available. Object Logo is an extromely powerful system, but seems more suited to tertiary use than for schools, leaving Maclogo. After many phone calls, is copies were fracked down, and ordered Could there be a site licence arrangement, as with MS Worts? Certainly not. Each copy mouid cost the full price. Cries of despair. A couple of days later the price was reduced: $\$ 170$ a copy, and sorry, one of the copies you ordered has been sold. More requests for negotiations for a site licence were refused, and legal action was threatened if the school tried any sort of unifateral arrangement. It's cost that school most of its sofware budget for the neat year just to buy Logo. That's not only ridiculous, it's an almost certain way to invite illicit copying The school concerned wanted to be fair and honest, yet it has been penalised by the archaic and ignorant practices of some software houses.

LEGO Australia is currenty withoat an eductional representstive in South Austratis, with Di Jackson accepting a research position elsewhere. For orders and info ring LEGO in Sydaey on 003251031 . Control Logo for the BBC is now available. and requires the Logotron chip ir image. The package is well presented in LEGO's new metallic grey and diagonal stipe livery and is the first in the new 'dacta line. What's that mean? Apparendy only the Danes know. The materials are comprehensive, but have an alogether different flavour from the Apple materials, reflecting their UK origin. It seems lite a case of 'here's how the technology works, learn it so that you can live with it grather than the what can you discover about this and mate with it?' approach from MTT. The primitives have a differeat flavour too: instead of TalkTO [A 3 5] on and the lite it's THOWOH [A 3 5]. The system puts a graphic of the interface on the screen, which can be turned off with BODISPLAY. The documentation includes some useful idess for using nonIEGO materials, wood. cardboard, etc. School price (site licence) is $\$ 310$

Theme for the next ACEC conference is 'Eackup the Future' and the logo (ie. the other sort) is based on an inage from well kown movufacturer of disks, photocopiers and things. Are they sponsors, one wonders?

Boxer was mentioned at both ACEC'8s and CEOSA conterence, and was given a good write up in The Austratian on Rovember Ist, complete with portrait of Liddy Nevile

Auseralian
Computers in Education Emerence secretary:
Conference -
Canberra $1-4$ October 1989

ACHE 8

H. (Po 311

Antula, $A(T) ?(d)$

