PORLL

A Journal for Logo Users

SN

Conference Reports

Volume 5 Number 1, November 1989

And s0 we begin Volume 5. How do you like our new look? It's an
experiment, so do write and teli us what you think (and perifgps send an article)

Most of this issue is taken up with reports from the Australian Computers in
Education Conference in Canberra and the Computers in Education Group of South
Australia State Conference. Conferences are a time of sharing ideas, meeting new

and old friends, and seeing new machines and software, and these two were noe
exception.

For once, there is no farge Logo program.

Flete.

Peter J. Carter, Editor

POTS
2 ACEC 89 13 Disgramming Recursion
6 CEGSA Conference 14 Resources
6 More LEGO Legs 17 Pascal, Logo, or...

7 recursion 2. (see recursion) 20 Computing at Entropy House

Address subscriptions and items for publication to: The Editor, POALL
Plympton High School
Errington Street
Plympton S. Aus. 5038

© 1989, P.] Carter, various ACEC ‘89 authors

POALL Vol5No1 page2

Austratian Computers in Education Conference 1989

Logo was not a definite strand at this year's confersnce, and was virtually
invisible in the exhibition, but was neverthejess in evidence. There was one clash
in the program; Anne McDougall and Liddy Neville were both presenting at the
same time (Boxer isn't Logo, is it.) LEGO/Logo was regularly demonstrated
throughout the conference by Peter Smith. Published here are the abstracts of the
Logo papers, and brief comments on the presentations.

Barry Newell: The Crowded Curricutum

Keynote speaker Barry Newell is well known for his Logo work and books
Turtle Confusivn and Jurtles Speat Matbemslics and his paper, ‘The Crowded
Curriculum’, contains a section entitled ‘The Importance of Programming’ which
describes some of the rationale behind the Turtle Trap problem outlined in Jurtles
Speak Matbomatics and "High School Mathematics: Logo and Linear Equations’ (in
the latest issue of dusiralian Educational Computing). Much of the paper concerns
the representation of knowledge as models. To summarise, its headings:
1. Intreduction
2. Some Basic Ideas
(a) Prediction is a fundamental human activity
(b) Prediction needs working models
(c) We live in a world of ‘representations’.
(d) There are two main types of representstions
(i) B can represent A if we agree that it does
(ii) B can represent A if B works in the same way as A in some
essential aspect.
(e) There are two main types of models.

Representation

"’ ————

.-"’f -—‘_"'-\—-
Eree Representation | ﬁ;’or}:mg Bepresetitation j
| Symbols } i tfodelz !
Statys M elz 3ok \i,-- g s
L.ta.n. Maduf] | Iymamic Modets |

T
¢

| Letters

| Wards Drawings | Fhysseal Hodela |
}Humet:als Paintings ‘ Soientitic Theories |
| | Seulptare | { Hethematioz "

Mape
Flanzs

Computer Programs
Mental Modele

3.Representation and Learning
(a)Learning is a ‘bootstrap process
(b) We'léarn by a ‘Guess and Test’ process
(¢) Learners must cope with's ‘belief-disbelief dilemma’.
(d) ‘Learning is driven by a 'search for simplicity'.
(e) Mental models are predominantly "visual’.
(f) Mental models are ‘tacit’.
4. Two Teaching Problems
(a) Our explanations are s limited source of ‘mode! building materials’.
{b} Our student’s old konowledge is also 8 Jimited source of model building
materials.

POALL Vol5Nol page3

3. Representation of the curricutum
6. The Importance of Programming

‘We will not make much progress, towards our goa{ of using computers to improve
children’s educational experiences, until we move beyond simple teol usage. Il we wish
to integrate computers into the curriculum, in more than a superficiai manner, then we
must begin to ustilise their fundamental properties. The representational -approach
advocated here suggests that, in essence, computers are devices for building working
models of the worid. These models are cailed "programs’. Thus, building asd ruaning
computer programs is one of the most direct ways that children can gain first-hand
experience in constructing and using articulated representations. (p 43)

7. Cenclusion
Margaret Kennedy: Beginner's guide to Logo

“Introducing LOGO (sic) to less able children, Margaret discovered the need
for a workbook to help these children acquire the basic framewerk to enabje them
to print, save, etc. She therefore wrote her own workbook, constantly revising it to
suit the particular needs of the children. The workbook will be available for people
to try out.’

Margaret outlined a number of problems in using Logo in the classroom ..
1 Logo is not as easily integrated as adventure games, and students cannot work as
independently.
2 Children need help at hand, eg. to understand error messages
3 Teachers, often new to computing and Loge, need support
4 Children need to work at their own pace, and keep records of successes and
failures
5 Scheduling machines and teachers can be difficult
...and reasons why Logo is a valuable learning experience
i Logoisfun.
2 Drawing is a logical extension of an everyday activity
3 Logo allows all children to use their creativity and achieve a satisfactory level
4 Logo is an excellent tool for the intellectually gifted
5 Logo encourages problem soiving and discovery
She demonstrated aspects of the workbook (based on Logotron Logol,
designed to provide the basic commands. a range of activities and reinforcement
and a springboard to further activities Among activities showa were screen mazes
All of us working with Loge have been down similar paths, but many in the
audience were clearly new to Logo, and for them it was a useful presentation

Pam Gibbons: Confusion, Gognition and Metacognition
{The agony and the ecstacy)

‘During 1988 I made use of Barry Newell's book 7urtle Confusion as a
resource in teaching a tertiary course on Logo and problem solving. It is perhaps
fitting thet [would like to use this conference, at which Barry is a keynote speaker,
as a forum to discuss the results and implications of the venture. The project has
raised some important issues in my owa mind about the hurdies that will need to be
overcome if problem solving is to be a serious curriculum objective in Australian
schools. This is not a session for those who are looking for hard-cere research; |
hope it will be-more of a ‘fireside chat’ about what happened when I put an unusual
resource into action with & group of hitherto traditionally educated adelescents.’

Barry Newell was in the audience, and we were given the task of solving two
of the puzzies (1 and 31) from Turtle Confusion

POALL Vo!SNol paged

Pam then showed a number of solutions devised by members of her class at
the Catholic College of Educaticn in Sydney. The paper itself contains a aumber of
comments from the students, one observing that he had never before been asked to
soive a problem that he did not already know how 1o solve.

Pam concludes: ‘'If we wish problem solving to have an impact in our
schools, we must provide students with opportunities o gain experience in the
solving of true problems. If metacognition is a valuable tool in true problem
solving, then perhaps we should not only provide opportunities for siudents to gain
experience in describing their own metacogaition, but we should assist in the
development of sppropriate {anguage to do so.

An attitude which does not narrow correciness down to one solution, the
skill of productive lateral thinking, the ability to analyse ones own thinking and
the confidence to try new approaches are facets of true problem solving which
would have a greater chance of bearing fruit if they were nutured in children
from an eariy age.’

Peter Carter: Stepping out: Legged robots in LEGO

‘We zke walking for granted, but legged rechots are the subject of intense
study at various research intsitutions around the world. With LEGO/Loge it is

possible to build simple legged machines and explore some of the issues and
problems ’

You read most of this in & previous issue of A4LL but illustrated this time
with slides, and with the inclusion of two new feg mechanisms (see pp 6 & 19). The
machines and second projector all warked, and the presentation was later described
by one person as ‘laid back’.

Anne McDougall: Recursions in Logo

This paper reviews research on teaching recursion in Logo programming.
and resources for this. It considers some areas of difficulty described in the
research literature. including treatment of only tail recursion. encouragement of
looping medels for recursion. effects of previous experience in BASIKC
programming, and that teachers and authors may be presenting a topic that they do
not fully understand. It notes that these problems are reflected in inaccuracies and
confusing treatments in some books on Logo.

Anne presented examples of correct models and explanations of recursive
processes, many of them from her PhD research work. Question time at the end
brought forth a question about the need for recursion, since recursion was rarely
used in Pascal, with its choice of looping constructs.

Some of these issues are explored in an item efsewhere in this edition of
POALL

Jeff Richardson: Computer Environments as media for expression (a
polemic)

‘A computer environment is a medium. So is televison. So is painting So is
print or writing. Or are they? It is a commonplace remark that the Jnformation
explosfon or \he silicon chip revolution is ss sxgmnca.m as the spread of the
priating press five centuries ago. Now writing existed before the printing press,
but Ivan Iilich has argued (AB] the alpbabelisation of the human mind North
Point Press 1988) that printing and the spread of what we might crudely cali
titeracy has changed the way that people think.

POALL Voli5No i page5

Strangely perhaps, a similar claim does mrol seem sustainable for moviag
pictures, even though their relationship to stiil pictures is much more dramatic.
(Marvin Minsky, quoted in Stewart Brand's 7#¢ Medis Lab (Penguin 1988) said
"Imagine if TV was actually good! We'd have to rethink everything *)

A similar claim is made however, for computer environments, by Seymour
Papert (Mindstorms 1980)

1 will argue that computer environments offer the possibility of
engagement to writers and readers (in a broad sense) in a way that writing does
and TV does not.

Great artists continue to create enduring works of literature, while the
ordinary person continues to use writing and printing to create and publish verbal
objects. Since the inventions of both cinema and TV, some canonical works have
been created. The ordinary person however is almost totally cast as a reader, or
consumer, even though video technology appears to offer something different.
Similarly, the software industry, while less than fifty years old, has thrown up very
few masterpieces. Within the computer culture however, there have been a lot of
ordinary people doing imporiant creative work.

Computer use in education can be divided into approaches which place the
fearner as a reader, a writer or both. It is possible to read and analyse computer
environments as texts. It is only possible however to use some computer
environments for writing, creating, further computer environments, or texts.

1 wish to emphasise the use of computer environments as media for creative
expression. Such eavironments may be the more commonplace word processors,
programmable spreadsheets, detabases or integrated works style environments. Or
they may be richer, more open ended and slightly exotic environmenis like
LogoWriter, Boxer or HyperCard.

The argument will be presented very briefly and the session given over to
discussion from the floor.’

Discussion from the floor was quite lively, particularly at several of Jeff's
comments: 'Most of the software here [in the exhibition} I despise.’ and "Carmen
Sandiego? I'd rather read the atlas ' Another was that there were only two creative
pieces of software, LogoWriter and HyperCard. Obviously not everyone's view, but
then, what is creativity? How can one be creative with Green Globs?

Liddy Neville: Introduction to Boxer

Since the published abstract was for a different paper, a couple of extracts
from the paper itself:

‘Boxer is not just a smarter or faster version of existing systems. Boxer has
its own unique design features which have been carefully developed to make the
human/computer interface as intuitive as possible. The spatial metapher which is
the basis of the environment is native to Boxer (although it is now appearing in
other systems). The hyperspace qualities of Boxer extend beyond the capabilities of
standard hypertext systems, and the boxes of Boxer are not cosmetic but
fundamental to the system. ...

Boxer does not fit into this category lof normal information handling
packages] Boxer is a working environment for thinkers It has evolved in the
rarified atmosphere of the academic world. Unless there is 8 concerted effort to
bring this technology out into main stream education, this type of electronic
support of thinking for learners will not necessarily exist. If Boxer does get this
support, it will be suitable for a wide range of learning situations including
learning ahout the established world and inventing the future world.’

POALL Vol5Nol pageé

Computers in Education Group of South Australia State
Conference, October 20.22

The conference itself was held at SACAE Magill, but the opening on the
Friday evening was at the Technology Schaol of the Future at The Levels. Garth
Boomer was opening speaker, and presented ten axioms and warnings about
technology in education. A selection: ‘The human brain learns experimentally. and
is aggressive to learn.’ ‘Brain power is shut down when someone else takes
responsibility for learning.” 'Studesits should demand and expect to use computers
astools.’ "Most testing is a brain hazard.’ "Schools are dominated by words’ (and not
graphics, music etc. ie. multimedia) The whole emphasis was on designing and
planning.

Rosemary Williams. of Portiand University. Oregon. was keynote speaker on
the Saturday, with the topic ‘Changing the way we think: Techaology in education
and everyday life.’ The theme was a quotation from James Dickey:

‘One constantly hears the computer referred to as & tool, as though this were reassurance
of some sort. It is reassurance only until one remembers how the tool has shaped the
human hand, and notes with a shock that this tool is shaping not the hand byt the mind.
A tool used as extensively as the computer cannot help influencing how we think.

Again. some good constructivist stuff. with emphasis on learning in a
culture, by tinkering and experiment.

There was only one Logo paper, published on the next pages. but Irene
Meyer ran two well attended LEGO/Logo workshops.

More LEGO Legs

LEGO walking machines, because of the limitations of sensing and coatral,
must be statically stabie. For a quadruped, that means either that only one ieg can
be in the air at a time, or the machine keeps all four on the surface at all times and
shuffies. The leg shown below maintains a constant length as it moves through a
small arc. Almost any gait can be used with it.

[Jle}]s] = Cannecior peg
01010
aoloto V,S * 1 brick
O '
Of 8]
of O
[coodeoodg Yehici i .
o] Pivots & holes apart
Drive €eport—3
R
Leg 16 * 1 brick g
?)8 Ratchet 4 % 1 brick
e

Spoked hub and tyre

(continved on p 19/

POALL Vol5No1 page 7

recursion 2 (see recursion)

Abstract: Without a sound understanding of recursion it is difficult, if not impossible,
to progress with Logo. Perhaps some of the difficulties people face are cavsed by
misconceptions about what recursion is and is not. This paper fooks at some of those
misconceptions, and suggests more satisfaclory explanations of the process.

‘Recursion is the act of delining an object or solving a probiem in terms of itself. A
careless recursion can lead to infinite regress. We avoid the bottomless circularity
inherent in this tactic by demanding that the recursion be stated in terms of some
"simpier” object, and by providing the definition or solution of some trivial base case.
Properly used, recursion is & powerful problem solving technique, both in artificial
domains like mathematics and computer programming, and in rea! life.’

The words of Friedman and Felieisen in their preface to 7he Little LisPer
(1987), an smusing LISP text with a clear emphasis on recursion. It is sot
necessarily the purpose of this paper to try to coaviace you that recursion is a
‘powerful problem solving techaigue’, but to give some familiar examples of
recursion, and to give an explanation, by analogy, that may help to explain what
happens during the execution of recursive Logo procedures.

Whether we realise it or not, recursion is common in our lives. News
broadcests and ielecasts frequently include segmenis from reporters outside the
studio, and in turn, outside reporters often present other speakers. We have no
difficulty keeping track of the report (within the report) within the report.
Modern telephone systems allow us to put a caller on hold while we make another
call to find some information before returning to the original conversation.
Language itself contains recursive elements with clauses and phrases nested
within ssntences, and this is mors apparent in some languages, German for
instance, with verbs 2t the end of senlences, than ip others.

In the arts, music, with often subtle key changes, shows recursive structure,
although uniess the listensr either has perfect pitch or can follow the score, the
fevel of pesting is easily lost. Shakespeare's ‘Hamiet’, with its play within the play,
is but one example of recursive theatre. Most people are familiar with Russian
dolis, nested one inside the other, and recursive pictures are quite common. [t was
just such a picture on a book cover that disturbed Sherry Turkie (1984):

‘Whenever | fosked st the photograph or the bock 1| couldn't step thinking about
them, yet couid find no way to capture for mysetf or for anyone eise exactly what it was
that was so upsetting and gripping for me.

Other children meet this experience in the form of questions about where the stars
end or whether there is ever a final image when mirrore reflect mirrors. In all of these
cases, what disturbs is closely tied to what fascinates and what {ascinates is deeply
rooted in what disturbs.

When I was in trouble with sel{-referentiaf pictures | could get no help. The aduits
sround me were no better able to handle the infinite series of ever smaller little girls
than | was, except to assert their authority by telling me not to think about such things.
Chifdren's encounters with ideas like seif-reference, infinity, and paradox are
disturbing and exciting and are made al! the more mysterious by the fact that appeals to
parents about them are likely to provoke frustrating admonitions not to think about such
siippery questions. Yet such questions become storm centres in the mind." {p 23)

Other workers have found, as did Turkle, that quite young children are able
to recognise recursion and seif-reference. Some children’s literature, for instance
The Cat in the Hat comes back contain recursive elements. But there are more
subtie recursions in nature. Benoit Mandelbrot has drawn attention to the ‘fractal’
nature of much of the world, and fractals since have become a popular means of

POALL Vol5Nol page$

demonstrating recursion. William Poundstone's thesis (1985) is that the universe
can be described in a few simple, recursive rules, demonstrating his case with the
game of 'Life’ and other cellular automata. (Brian Silverman has, in effect, turned
the book inte software with 7he Phsatom Fishtank) Recursion in some form is
inescapable.

Logo and recursion are almost synonymous, and there are occesional
arguments about whether a programming language for students should use
recursion so widely or be equipped with looping structures: REPEAT. . . UNTIL,
FOR...DO, WHILE. .. DO, etc. (Logo'sREPEAT is less powerful than those.)

More than once | have listened to discussions in the Pascal community about
the value of both REPEAT. . . UNTIL and WHILE. .. DO, because students tend to be
uncertain ebout which to use in which circumstances. Abelson, Sussmean and
Sussman (1985) are characteristically blunt in their comments about such choices,
and their machine implementation: . special iteration constructs are useful only as
syntactic sugar.’ (p 33) In other words, there need be no choice, iteration can be
performed more effectively with tail recursion.

Many writers of Logo books, especially in the early years of Lago, offered
explanations that were plainly wrong. That may have been due to their
unfanmiliarity with Logo compared with, say, BASIC, but the impression they leave is
faise. One example, by Gruber (1983):

‘This brings us to what | would consider a more controversial aspect of Lhe

fanguage: recursion, that poculisr programming construct in which a procedure calls
itsell. Here's a very simple exampie... [With a line missing in the original]

TO PRINT.?0.10 W&
IF :F® > 10 [STOP]
PRIET . 20.10 :HFOKL +
EED

The lines are executed in order, just as in BASIC. ...
The key is the next line...

PRIBT.T0.10 :FWR1 + |

This is the recursion, the procedure calfing itsel! but with the argument :¥DM

increased by 1. Actually, in this simple exampie, the recursion is exactly equivalent to
2 GOTO the IF line.’ (p 14)

The fact is that the recursive call is not equivalent to 2 GOTO, and the
procedure does not call ‘itseif’. Elsewhere in the article, Gruber discusses locel
variables, but nowhere does he offer a clear explanation of recursion. One is left
with the impression of a2 loop. Recursion is nor looping. Recursion is nesting,
interruption and deferral; procedures calling new copies of themselves.

Other writers of the same period offer descriptions similar to Gruber’s, or no
explanation at all. Heller er a/ for example, have sit pages devoted to very
cumbersome fracta} procedures but make no sitempt to describe or explain the
process, and the word ‘recursion’ dees not appear in the index.

Fortunately, other writers, who seem 0 have come from &
mathematics/computer science/LISP background have been more helpful. The most
sccessible writer is Brian Harvey, whose Computer Sciepce Logo Style trilogy
should be required reading for teachers, and course planners and administrators
In Volume 1 (1985) he presents four Chapters S, each dealing with recursion from 8
different viewpoint: the combining method, the little people method, the tracing
ingthod and the feap of faith method. I would suggest that you read these at your
eisure

Let me offer an expianation that is similar to Harvey's 'tracing method’, but
embellished by ideas adapted from Douglas Hofstadter, and taken from Jhinking
Logo (Carter 1987, pp 16..17). For & procedure, a small numerical example:

POALL Vol5No 1 page9

10 Counting? :number
IF :mumber = 0 [STOP)
Counting? :number - 1
PRINT :number

EXD

‘Turties are known to occasionally mutter to themselves as they work. One was once
overheard as it worked on this problem: (Seems it had access to a photocopier...)

“Hmm, Counting2 3. :number's not 0, so what's next? Counting2 3 - 1.“ (Makes copy
of Counting2, writes 2 on it, and puts Counting2 3 on the table.)

“Hmm, Counting2 2. :number's not 0, so what's next? Counting2 2 - 1.” (Makes copy
of Counting2, writes | on it, and puts Counting? 2 en Counting2 3 on the table.)

“Hmm, Counting? {. :number's not 0, so what's next? Counting2 ! - !." (Makes copy
of Counting2, writes 0 on it, and puts Counting? | on the stack.)

“Hmm, Counting2 0. :number is 0, so that's the end of that onel” {Tosses it into the
bin and picks up the top copy from the pile on the table.)

“Ah yes, print the value of :number.” (He writes 2 ! on the screen, drops Counting2 !
into the bin and picks up the top copy.)

“Ah yes, print the value of :number.” (He writes a 2 on the screen, drops Counting2 2
into the bin and picks up the top copy.)

“Ah yes, print the value of :number.” {He writes 2 3 on the screen and drops
Counting2 3 into the bin.)

"Done.” he murmurs with 2 satisfied grin.

In many instances of recursion 2 process is replaced by a modified copy of itself;
PolySpi is 8 classic example. In others, like Counting2, the process is deferred until the
simplest case is Iinished and the recursion ‘unwinds’. Below is the first of many
diagrams showing how recursive processes work. The numbered circles represent calls to
the procedure, 4 in this instance. The downward pointing arrows on the left show values
being passed. I there were outputs they would be shown upwards on the right but
Counting2 simply prints its vajues.

Countings 2 I 4
'{TH} Eromts %
—f

Lall prints ©

Prindz 1

Stopped

The choice of the word 'stack’ is deliberate. The Logo interpreter uses a
stack to store the variables for each instantistion of the procedure: at each call, the
values are 'pushed’ Lo the stack, as the recursion unwinds, they are "popped’ off.
When a Logo system crashes with an OUT OF MEMORY error the problem is really a
stack overflow, usually caused by a recursive procedure without an adequate stop
rule. Mention of the bin in the story is an allusion to ‘garbage collection’, the
method by which the interpreter reclaims unused memory.

POALL Vol5No! page 10

Most modern Logo implementations have a TRACE facility, which allows
inputs and outputs, and the level of recursion, to be monitored. A list processing
example:

T0 Remove :item :list

IF EMPTY? :list {OUTPUY []]

IF :item = FIRST :list [OUTPUT Rewove :item BUTFIRST :@list}
OUTPUT SENYEBCE FIRST :1list Remove :item BUTFIRST :list
EXD

SHO¥ Remove ”potato [apple orange bamana potato pinespple apricot]
Remove potato [apple orange banans potato pineapple apricot]
Remove potato [orange baensma potato pineapple epricot]
Remove potato [bamans poteto pineapple epricot]
Remove potato [potato pinsapple apricot]
Remove potato [pineapple apricot]
Eemove potato {aprioot]
Remove potato []
Remove Outputs |[]
Regove Outputs [apricot]
Remove Outputs [pineapple apricot]
Rewove Outpuis [pinespple epricot}
Remove Outputs {banana pinespple apricot}
Remove Outputs [orange bansme pinespple apricot]
Remove OQutputs [apple orange bamena pimeapple apricot]
[epple orenge banans pinespple apricot]

It is not difficult to draw a diagram from such & trace, but the task becomes
more interesting when the recursion branches..

T0 Count¥ords :object

IF EtPTY? :object [OUFPUT 0]

IF ¥ORD? FIRST :object [GUTPUT 1]

OUTPUT (CountWords FIRST :object) + (Covnt¥ords BUTFIRST :object)
E¥D

PR Count¥Fords [This is [a list]of lists]] (see diagram on next page)

How should recursion be introduced? Most writers begin with tail recursion
(PolySpi etc.) But there is a body of opinion that suggests that ‘embedded’
recursion be used first, with tail recursion coming later as a special case, this
sequence reducing the likelihood of recursion being seen as looping 1 generally
begin with tail recursion, but always with stop rules, and emphasise that the

precedure is not calling itself, but 2 new copy of itself. A procedure like this can be
used...

T0 Steps :length

IF :length < 10 [STOP]

FORFARD 10 RIGHT 90 FORWARD 10 LEFT 90
Steps :length - 10

2.1

.and then changed to. 70 Steps :length
IF :length ¢ 10 [STOP]
FORWARD 10 KIGHT 90 FORF¥ARD 10 LEF? 90
Steps :length - 10
RIGHT 90 FOR¥WARD 10 LEF? 90 BACK 10
EXD

POALL Vol5No1 page 11

[This is {a Yist)fof Vists] [

Countwiords at watk.

How weil do students cope? Turkle (1984) cites the case of ‘Maithew’ who
was sbie to undersiand recursive procedures atage five. | have seen eleven and
twelve year olds cope with tail recursion; but on the other hand | have seen Year 11
and 12 students in difficulties (and not only with recursion. 1 guestion the value of
curreat Computing Studies courses for many students). John de Figueirdo (1989)
found many of his students in difficulties. 1 have a strong suspicion that many of

the problems can be overcome with adequate descriptions and explanations of
recursive processes.

POALL Vol5No | page 12

How does one design recursive procedures? Perhaps the advice of Hofstadter
(1986) is the most concise:

*...To speil out the exact nature of this recursion-guiding pathway, you have to answer
two Big Questions:

{1) What is the embryonic case?
(2) What is the relationship of a typical case to the next simpler case?

Now actualiy, both of these Big Questions break up into two subquestions (as belits any
sel{-respecting recursive questionl), one concerning how you recognise where you are or
how you are to move, the other concerning what the answer is at any given stage. This,
spelled oul more explicitly, our Big Questiocns are:

(14} How can you know when you've reached the embryonic case?
(15) What is the embryonic answer?

(22} From a typical case, how do you take exactly one step toward the embryonic
case?

(25) How do you build this case’s answer out of the "magically given” answer to the
simpler case?

Question {2#) concerns the nature of the descent towards the embryonic case, or bottem
line. Question (24) concerns the inverse aspect, namely, the ascent that carries you
back up Irom the bottom to the top level.’ (p 416}

Long ago (in computing terms) LISP was given the power of recursion for
the symbol manipulation of Al research Logo has that power witheut the
confusing syntax and unsnecessary choices of looping constructs of other
languages. Logo is a language which allows students the freedom to explore and be
creative, with recursion as a perfectly natural part of the language and probiem
solving techniques.

One is mindful, however, of Hofstadter's Law: ‘It always takes longer than
you expect, even when you take into account Hofstadter 's Law .~

References:

Abelson, H. and Sussman, G. with Sussman,]. Siructure aod ipterpretation of
Computer Programs MIT Press, 1985

Carter, P.]. TAinking Logo 1987

de Figueirdo,]. ‘Students don 't think recursively’ P04LL Vol 4 No 4, pp7..15

Friedman, G. and Felleisen, M. 7he Little L/sPer MIT Press1987

Gruber, A. 'From LISP to Logo' in (a// 4. PPLE Vol 6 Na 8 August 1983

Harvey, B. Computer Science Logo Style: Intermediate Programming MIT Press 1986

Heller, R, Martin, C. and Wright, | LZOGOWORLDS Computer Science Press 1985

Hofstadter, D. Godel Escher. Bach. An Frernal Golden Braid Penguin 1980

Hofstadter, D. Metamagical Themas: Questing for the Fssence of Mind and Pattern
Penguin 1986

McDougall, A. ‘Teaching about Recursion in Logo: a Review’ in Dupe, T. AU 84
Backup the Future CEGACT 1989

Poundstone, W. 7he Recursive Universe Wm Morrow & Co 1985

Silverman, B. 7Ae Phantom Fisbiant 1CS] 1987

Turkle S. 7he Second Self: Computers and the Human Spirit Granada 1984

POALL VolSNol page 13

Diagramming Recursion

As part of the presentation of the above paper, the Counting2 procedure
was diagrammed on screen, by (naturally) a recursive procedure

T0 BestC2 :number
CLEARTEXY

BestC2Aux :number momber ¢
EXD

70 BestC2hux :level number :@tab

Tab :tab Topline 16

Tab :ted PR (SE {{T0 Counting2] :number [\ |])

Tab :tab PR (SE [|IF) :number [= 0 \[STOP:\] |])

IF :number = 0 [Tab :tad BottomLine 16 STOP)

%sb :tab PR (SE [|Counting2] :mumber - & [v v \ |])
BestC2hux :level number -~ 1 S * (i + Abs (:mumber - :level))
Teb :tab PR (SE [(PRINT] :mumber [% L VA LV A & [

Tab :tab PR [JEEDY VA A A AV A A VAN

Tab :tad Bottomline 16

EXD
T0 Tab :spaces T0 Abs :muaber
REPEAT :spaces [TYPE CHAR 32) OUTPUT IF :number < 0 [- :mumber][:number]
EED EED
70 Bottomline :lerngth TO Topline :length
TYPE ”| TYPE CHAR 32
REPEAT :lengtbh [TYPE "_] REPEAY :length [TYPE ~_]
PRIRT | PKINT CHAR 32
END EXD
]P0 Counting2 3 |
|IF 3 = 0 [STOP] |
{Counting2 2 |
|TO Counting2 2 |
JIF 2 = 0 [STOP) |
{Coonting? 1 |
{70 Counting2 1 |
{IF 1 = 0 {STOP] |
|Counting2 0 |
{T0 Commting2 0 |
{IF 0 = 0 [ST0P] |
| I
|PRINT | |
-
|PRIBT 2 |
i |
{PRINT 3 |

You can adapt the idea to any recursive procedure.

POALL Vol5No ! page 14

Resources

Commeodore Amiga Logo

A Logo has just been relessed for the Commodore Amiga. It's written by Carl
Sassenath for Commodore-Amigs and is designed to emulate Apple Logo, even to the
Control key commands. That's a curious decision; here is a 1989 version of Logo.
running on a 68000 machine, and emulating a limited 1982 6302 implementation.
That imposes a number of restrictions.

Turtle is turtle shaped, smali, and green and gold in colour. There can be 31
colours on the screen at once, and the paletie can be changed with the SetRGB
primitive; pencolours can be changed after objects have been drawn. In the
default palette, colours 1.6 are those of Apple Logo. Colour 0 is always the
background colour. There'sa Fill primitive, and also FillIn, which fills areas
drawn in any pen colours, and a GRType, which doesn‘t erase like that in LCSI
Loge 11. Dot is implemented, but not DotP.

An interesting feature is Mouse Draw. Turtle is dragged about by the mouse,
so freehand drawing and Turtle graphics can be mixed.

The graphics area always fills the whole screen, with the text or editor
window superimposed on it. The text window can be moved or resized. TS, 55 and
FS work as expected. Typing TO .. takes one to the edit window, which one leaves
with <CTRL> Cor <CTRL> G. There isan EQit¥ile, but to save the file one leaves the
editor with <CTRL> G and uses SaveFile. Self starting files must be generated with
FaitFile by adding a command line at the end, rather than with :STARTUP (A
similar technique can be used with View and Logoiron on the BBC)

Property lists and buried packages are implemented. Predicates may end ia
either Por 7, eg EmptyP or Empty?

The manual is in a ring hinder, in two sections, tutorial and reference.
There is an index, but no bibliography. and no real techaical detail on the
implementation. Although the manual suggests that the version was designed 10
make it easy to use with material from existing Logo books, none is listed. To go
with the package, Commodore Ausiralia has commissioned some beginners’ material
from Pam Gibbons in Sydaey. She was happy to write it, but puzzled.

The other main area of interest is the Say primitive. Assuming the machine
has Workbench 1.3 and the necessery hardware, Logo can generate speech.

So much for what Amiga Logo has. Now for what it hasn’t. There are no
multiple or redefinabie Turtles or sprites. In that regard, this Logo is less capable
than Commodore 64 Logo of 1983. Neither Step nor Trace is implemented, so
debugging support is limited. (Will there be an Amiga Logo Tool Kit like the old
Apple Logo Tool Kit to supply the necessary procedures?)

The Logo seems to run at a respectable speed, about & seconds for & 200 line
PolySpi. but each run of the procedure needed at least one, il not two, garbage
collections. That's interesting, because tail recursion shouldn 't slow things down. |
was unable to crash it with 30 level list processing recursion, so at least there
should be no problems in that regard.

There is one feature (?) that this reviewer finds particularly annoying.
Type PR “fred and this Logo returns FRED, in other words, although it is case
insensitive as regards input, Amiga Logo output is always all capitals. (In my view,
text in all capitals deserves capital punishment.) Something else is definitely a bug.
With this procedure (How I write it, not how Amiga Logo prints it):

TO Remove item :list

IF EMPTY? :list [OP {]]

IF :item = FIRSY :list [OP Remove :item BF :list]
OF SE FIRST :1list Remove :item BF :list
END

... this input:

POALL Voi5No !l page 15

show remove "z [abcde fghijklmnopgqrstuvexyz]
returns:
ABCDEFGHIJELMEOPQRSTYUYYIXY []]

In other words. Sentence is tacking empty lists and words on to objects. That's not
what Logo should do, and it could lead to all sorts of interesting problems.

Another potential problem is that one cannot have a procedure and a free
variable with the same name. That's easy enough to program around, but it's an
unnecessary restriction.

It’s good that the Amiga now hasa Logo, but it’s 8 strange one, and one could
be forgiven for wondering why Commodore didn’t have a version written by
Terrapin or LCSI, instead of by someone who is ciearly outside the mainstream of
Logo. I can’t help thinking it might be better to use the Amiga’s MS-DOS capability
to run LogoWriter.

PC Logo

PC Logo. by Harvard Associates, has been around for a while, and version 3.0
is now available. PC Logo makes much better use of the PC's features than does
Amiga Logo of the Amiga, to the extent of using an 8087 math coprocessor if fitted,
access to the Bi0S, and the capacity to use either CGA or Hercules standard graphics.
Syatax is MIT/Terrapin style, with predicates ending in ?, and IF. . THEN. ELSE
ratherthan IF. .[..][..]. Stepping. tracing and other debugging primitives are
included, as is the ability to work in bases other than 10. Playing with binary or
hezadecimal numbers is easy, and there are logical operators, LOGAND, LOGOR, etc.
for use with binary numbers. Some aspects of computing science are therefore
easily demonstrated. There is full access to files.

On a NEC Powermate | Plus, a 200 line PolySpi took about 3.5 seconds, even
with the triangular Turtle visible, and quite smoothly, without any garbage
collections. List processing was also quite fast. {t's possible to set stack and other
mepory sizes at startup, so there should be few problems with stack overflows.
However, like Amiga Logo, this one also returns objects in upper case. Normally, PC
Logo is case insensitive, but the CASE and NOCASE primitives change it to case
sensitive. There seems to be little excuse for this sort of behaviour. If a system
needs, to save memory, to store procedure definitions in all capitals, that is
something that can be lived with, but to arbitrarily change text and other objects
seems quile unnecessary.

PC Logo comes with a tutorial manual, a reference manual and a quick
reference guide; comprehensive and well written. There is also a utilities disk with
some sample programs (the old DYNATRACK, ANIMAL etc.), and an order card for
the MIT Logo books (Harvey e/ 4/) and books by Birch. The package is $199. and site
licences are available. For Year 12 students it would be a good system, for younger
students I1'd still prefer LogeWriter. My thanks to Terry Malone of EdSoft for the
opportunity to iry it.

Jurlles Speak Mathematics

Turtles Speat Mathematics is Barry Newell's second Logo beck. Like Zurtle
Confysion, the book is in the form of a dinlogue between EBN and the Turtle, this
time without puzzies and riddles, but with discussion of many issues relating to the
teaching of mathematics and gencral problem sotving:

*'...my question Is “how-does & real-life, hasdworking, syllabus-bound teacher make use
of mathematics-speaking turtles?”.’

POALL Vol5 Nol page 16

‘That’s the central question,” said the Turtle. ‘Thai's the centra! question...”

Logo's place in the curriculum has always been problematical. and Newell's
answer is clear: Logo is a notation for problem solving in many aspects of
mathematics.

“"What do you real by “real mathemsatics™?" said the Turtle, with a twinkle in his eye.
"The mathematics of real numbers?”

‘l mean things like aigebra and trigonometry and coordinate geometry and calculus and
estimation and statistics and ..’

‘Good!” said the Turtle, rubbing his hands together and holding them out to the fire. ‘You
can meet ali of those topics with the turtie’s help ... but you need to add iteration and
recursion and topology and dilferential equations and physics and animal behaviour and
artiflicial intelfigence and robotics and principles of design ... the list is aimost
endiess.””

The main part of the discussion is centred around the Turtle Trap,
procedures based on some ideas from Chapter 2 of Abelson and diSessa’'s Jurtfe
Geomelry. The idea is to resirict the Turtle to one part of the screen as it wanders
RANDOMIy about.

Equally central to the book is a parable against ‘disembodied learning’
caused by artificial boundaries between subjects

The boek concludes with 8 list:

Logo provides:
{. contact with fundamental and usefu]l mathematical ideas.
2. interesting contexts that give reasons to learn the mathematical ideas.
3. links (between intuitive knowledge and formal idess) that are the means to learn
the mathematical ideas.
. working models of mathematical ideas and scientilic concepts.
. good feedback so that you can assess your own ideas and understanding.
. first-hand experience with the power of formal methematical knowledge.

O\ LA

Turtles Speak Mathematics should be read by all teachers of mathematics.
Others

Two potentially interesting books have just been reviewed in Aswre The
first is The Turing Omaibus: 61 Fxcursions in Computer Science by A K. Dewdney,
who writes the ‘Computer Recreations’ column in Scientific American. Publisher is
Computer Science Press (distributed by W. H. Freeman), 415 pages for $US24 95

The other is Jurtles of the Wor/d by C. H. Ernst and R. W Barbour It'ssa
review of the 257 species and 200 million year history of the turtle, and is a
publication of the Smithsonian Institution. Price is $US45.

POALL Vol5Ne 1 page 17

Pascal, Logo, or something else?

Why teach Pascal in schools? That was the main question asked in 'The
Pascal Experiment’ as it was published in PO4LL or ‘Pascal? Why?' in an
abbreviated and serialised form in the CEGSA Newsletter. So far, noone has
answered.

Yes, one was ‘stirring’, but there is a serious intent, and there are some
other questions that perhaps need thinking through: Why teach programming?
Why the emphasis on data processing? Why not skills of planning, modularity etc.
but without the rigid analysis/design/code/validate scheme? Why oot
programming by experiment and debugging? Why not 0O0PS and hypertexi, the
current ‘in’ paradigms? What do the universities and SAIT want of their
prospective students apart from Keyboard skills and the ability to use word
processors etc? Do they really want familiarity with Pascal syntax, or notions of
planning and modularity? What about our students? Are we aiming at future
computing professionals, at computer users in other professions and trades, or at
students who have run out of Tech. Studies and Home Ec. options and don 't have the
inteliectual capacity to cope with the abstract and symbolic notions of
programming? (NB. I'm not disparaging Tech. Studies and Home Ec.) Of course
there may be aspects of High school that this former Primary school teacher has
yet to understand.

That a student’s first programming language is influeniial has been
observed by many writers. Two examples:

‘Our experience, snd that of others who teach programming, is that a first computer
{anguage's particulfar style and its main concepts not only have a strong infivence on
what a new programmer can accomplieh but ziso leave an impresszion about
programming and computers that can last Jor years. The process of learning to
program a computer can impose such a particuiar point of view that alternative ways
of perceiving and solving problems can become extremely [rustrating for new
progremmers.” (Kay, 1977)

‘Along with this dissatisfaction [about existing languages| goes my convictien that
the language in which the student is taught to express his ideas profoundly
influences his habits of thought and invention, and the disorder governing these
fanguages directly imposes itsell onto the programming style of the students’
(Jensen and Wisth, 1975)

Given that, what are the qualities needed in a language for students, and by
students I mean those at primary and secondary level? Perhaps the following, in
no particular order:
¢ Interactive, either interpreted or incrementally compiled.
¢ Easily used editing and filing systems.
¢ Easily used graphics (Turtle and coordinate) and sound. (‘Sprites’ and "demons’

would be useful, but not essential)
¢ The ability to control external devices (eg. Turtles and LEGO machines).
¢ Modular, with two-way parameter passing
* Minimum syntax, and consistency in forming constructs.
s Convenient, but not restrictive data typing.
¢ Meaningfu! error messages.
¢ Easy manipulation of text.
* Easily used looping constructs, and recursion
o Mathematical functions.
® Power and expressiveness.
s The ability to demonstrate and explore fundamental issues in computing

POALL Vol5No1 page 18

How many languages meet those criteria? There was some iateresting
correspondence, following an article on the subject, in Byle in 1984, One Wendell
Brown wrole almest despgiringly (Brown, 1984):

‘Are we to go on teaching bad habits to our beginning programmers? Pascal is
certainly an alternative. But Pascal is intimidating and hard for many students to
learn as their [irst language. Editing, compiling, executing, and re-editing to debug a
program cap severely test the patience of & young person...

Isn’t it about time somebody effered a wall-structured, incrementally compiled
language for the Apple 11?7°

There were several replies, one from an obvious Logophile, who after
describing Logo's features stated (Teller, 1984): ‘The language is Logo .’

Now, Logo is not without its faults. Andy di Sessa has admitied thatl from the
time the idea of the Turtle appeared, list processing received less attention than it
should have in the design of Logo. We still have much of the power of LISP, but it is
often, to some people, inaccessible. To write a large and complex list processing
program requires considerable effort and understanding, probably more than the
average student will bring te the problem. Teachers who have experience with
other languages will often find the style of Loge rather foreign: the argument in
South Australia a year or so ago shout stop rules was a consequence of one person’s
unfamiliarity. There are two ways to overcome these problems: one is to read
writers like Harvey. the second is to write in nothing but Logo for a time

Issues of syntax in Logo are nonexistent once the process of evaluation is
understood, again, Harvey is perhaps the best to read. The distinction between ~
(quote) and : (dots) is easy: * means "treat this word as just a word’, while : means
‘return the value bound to the word’. The real intellectual leap is the process of
recursion. There are as many ways of understanding that as there are expositors;
Harvey gives 4 separate explanations in 4 separate Chapters S in the first volume of
his trilogy.

Logo as it stands, despite the forthcoming new version of LogoWriter! is not
the latest, nor necessarily the best. medium for programming in schools Two
paradigms are becoming increasingly important in programming

The first of these is Object Oriented programming The ‘classic’ object
oriented language is Kay ‘s Smalltalk, but objects are appearing in versions of other
languages. witaess C++. Common Lisp Object System, and, you guessed it, Object
Pascal (in several forms). (Of course, to use the 00PS features of C++ or Object
Pascal. one must first know C or Pascal. which rather defeats the purpose in a
learning situation.) There is also Object Logo. a very powerful system for the
Macintosh. at present the only truly incrementally compiled Logo. As well. Ada and
Modula-2 have some object concepts built into them. Which should be learned first?
The consensus seems to be that Smalltalk offers the best grounding. since the
concepts are applicable to the other OOPS languages/dialects, and it offers a
complete and coherent programming environment. designed. like Logo. for
beginning programmers, including children. It was the mode! for the Macintosh
user interface, and the other GUIs. Given that Smalltalk is now available for the
MS-DOS and Macintosh envirenments, a case could be made for sbandoning Logo
and introducing Smalitalk (In case that sounds like heresy from a Logophile, look
up Smalltalk in Mindstorms Smalltalk has much of the list processing ability of
LISP, as well as arrays. and an old friend:

Turtle
new¥Findow: ‘Turtle Grapkios’; defaultMib;
2, darkfray; home;
3 timesRepeat: [Turtle go: 100; turn: 120}

! Any Primary school which has not changed te LogoWriter is missing out on & much more
intuitive Logo environmest, together with soine superb teaching materials.

POALL VolSNo! page 19

Logos with multiplc Turtles already have something of an object flavour: each
Turtle with both inherited characteristics and its own .)

The other class of programming (in reality a subset of OOPS) is hypertext.
The most visible example is the Macintosh HyperCard. but Guide has been available
for MS-DOS machines for some time, and other systems are appearing. For the
Apple IIGS there is HyperStudio, still without scripting and a bit fragile, but
showing promise. IU's possible to use HyperCard without ‘programming’ in the
normal sense at all, but to make the best use some scripting is necessary. HyperTalk
is an English-like, interpreted and interactive programming language, and a
aumber of people have found that children take to it easily.

Boxer, the successor to Logo, is hypertext (for ‘button’ read 'port’), and in
the sense that entities are represented by their boxes, object oriented. There are
experimental Boxer siles in Australia, the Sunrise School in Melbourne for example.

Pascal has been, and will continue to be, a significant and influential
computer language. It was designed for teaching. bul not for young students, who
need something different, much more immediate and fiexible. Pascal is for
training, not education. The real issues for siudents are not the syntax of some
particular language, but ‘figuring out what we want to compute. how we will
decompose problems into manageable parts, and how we will work on the parts’
(Abelson ezal 1985, p xvi)

References:

Abelson, H. Sussman, G. and Sussman, | Strecture and laterpretation of Computer
Programs MIT Press, 1985

Brown, W. Letter to Editor, Byze July 1984, p 16

Harvey, B. Computer Science Logo Style: Intermediate Programming MIT Press

This book should be mandatory for dnyone teaching with Logo

Kay, A 'Microelectronics and the Personal Computer’ in Seientific American,
Vol 237 No 3, September 1977, p 239

Jensen, XK. and Wirth, N. Pasca/ User Manual and Report (2nd edition) Springer-
Verlag. 1975, p 133

Teller, J. Letter to Editor, Byze December 1984, p 22

More LEGO Legs (continved from p 6)

A hexapod remains stable by always having three feet on the ground; the
alternating tripod gait. We recently devised another leg mechanism, after deciding
-that wire was the best means of connecting the gearsto the legs, because movement
about two planes is necessary. In action it vaguely resembles Sutheriand’s ‘Trojan
Cockroach’. k

POALL VoI5 Nol page 20

Cornpting at Enlr O Houase.

What is SSABSA Computing Studies about? As people at & recent SACSTA
meeting were told, very few students who have done the course are eatering
computing courses at SAIT or University. Standards of students entering are
improving, because of other exposure to computing at school, but one of the
problems remaining is a weakness in understanding of abstraction.

In procedural terms,

TO Cube :number
OUTPUT nomber + :number + :mmber
EXD

is an abstraction, since it can represent the cube of any number. Which makes
more sense vhen reading a program, IF :number * :number ¥ number > 100
[do something] or IF Cube :number ... ? Harvey hasa good section on data
abstraction in Volume 2, pp105..108. Scheming types might work through the index
1n Abefson, Sussman and Sussman.

Begin Computer Science at Adelaide University in 1990 and learn Ada, the
{anguage that has been described as a ‘language non-proliferation treaty.’ Yes, you
can do some LISP. in third year.

Know what 'media ecologists’ are? According to Prof Herb Karl (The
Australian. October 24th. p 31) they examine media in terms of how they extend
human facuities. Of Logo he is reported:

"Logo is out of favour with educators in the US because it is "too simple’ but that is

why it is so great.” Professor Kari said.

Kids can learn how to make things happen, develop analytical skills. propositional

thinking and see how these processes work in their own minds when using Logo.’

Logo Computer Systems Inc has appointed a2 new representative in Australia.
(Not before time I hear you say.} The company is Computelec Data Systems, of 44
Peninsuia Boulevard Seaford Victoria 3198, (03) 786 7177, and they 've started off on
the right foot by sending fliers about LogoWriter to every secondary school. Ask
most secondary, even primary, teachers in South Australia about LogoWriter and
you'll get blank looks. so it's good to see some promotion at last. Computelec (the ‘e’
before the '{’ is sounded) will be handling alf LCSI products, as well as the Valiant
Turtle.

CEGSA's new monthly newsietter is named R4Mpage Perhaps PUALL needs
an heraldic shield, with Turties RAMpant!

