
PO ALL
A Journal for Logo Users

**
*

Students at Work

Volume 6 Number 3, November 1991

Two fine papers this time, different, but connected in that they report work by
students using Logo as a language to explore and create. We have here students
establishing intimate contact with deep ideas from mathematics, history, geography and
intellectual modelling, exactly what Logo was intended for. The Logo is not the most
elegant in places, but elegance comes with experience, and that is what these young
people are having in sympathetic environments. Special thanks to Jenny Betts and John
Turner for sharing with us.

I'm taking leave next year. Time to go to sea for a while, rewrite Thinkinf.:
Logo, paint the house, look for a writing job, etc. etc. I've been offered endless hours
of part-time canoeing instruction, and I can be available for some consulting. Since I
won't be in a classroom I'll depend more than ever on your contributions.

If you'll be moving for 1992, please let me know your new address. Should
your copy of POALL be returned undelivered your name will be deleted from the
mailing list.

All the best for Christmas and the New Year. May all your Turtles live long and
prosper.

POTS

Papert's Vision- Students in Control of their Learning 2
The creation of databases using Logo Writer 6
Computing at Entropy House 20

<0 1991, P. J. Carter, J. Betts, J. Turner

POALL Vol6 No 3 Page 2

Papert's Vision- Students in Control of Their Learning
John Turner, Presbyterian Ladies' College, Melbourne

(with special thanks to Audrey Yeo, Year 10 PLC student)

In his 1980 book Mi1ulstorms: Children, Computers ami Pmve~{ulldea.v, the
founder of Logo, Seymour Papert, was extremely critical of the traditional school
environment, attacking the classroom as 'artificial and inefficient' (p 8). As a post­
primary teacher I have seen at first hand how set time periods for classes, and the
demand to achieve units of prescribed syllabus orientated work, can work against the
student using Logo as it was intended Too often students are inhibited in their potential
use of Logo beyond a limited role as a tool to complete activities that could otherwise
have been completed in the conventional way with textbook, pen and paper.

To what degree, therefore, are Logo related processes transferable to
conventional post-primary school communities so that all students, and teachers, can
benefit from what Logo has to offer? General Logo based research in this area appears
too often to rely on Logophile influences intrinsically linked to its success. I believe that
if examples can be promoted applicable to traditional school demands, then, rather than
waiting for revolutionary Jed change, reformation can be brought to each student's
learning much sooner.

I am pleased to be able to provide some light to such a path. Not surprisingly
the following occurred in my Year 10 Computer Studies class, and not in the
Mathematics mainstream (where I also like to swim).

My students had undertaken a series of investigations looking at the potential of
Logo over a wide range of activities. 1l1is had included looking at music and animation,
problem solving, databases and recursion. LogoWriter on the Apple //e was the
medium.

The recursion study was generally not School Math orientated, but instead was
built around McDougall and Adams' (1983) procedures for writing poetry linked to
Thornburg's recursive poem 'The House that Jill Built' (Thornburg, 1986, pp 97-102).

Following these investigations the students were given options for project
work; either their own choice or from a list of possibilities. One of these called for an
investigation of von Koch's curve, a simple shape around which snowflake
investigations could be built.

'1'0 Koch :side
FD :side LT 60
FD :side RT 120
FD :side LT 60
FD :side
END

/
One student, Audrey, took up this offer. In Mathematics she had already

studied snowflakes and developed formulae to calculate the length, perimeter, number
of sides and area of snowflakes as part of a unit on Series.

For the frrst part of her project, Audrey identified the need to design procedures
for the formulae calculations- a relatively straightforward step. She applied recursive
thinking to solve the simplest problem first. What happened next is best told by
drawing on Audrey's procedures and comments.

TO Startup
CG CT HT
PU SETPOS [-50 -80] PD
Tri 90 1
No.Sides 1
Perimeter 1
Area 1 (continued 011 treXI page)

POALL Vol6 No 3 Page 3

PR (SE [This is the basic shape used in the construction of the
snowflake. It has)
:ns (sides, each side measuring one-third of a unit of Logo
length. The total perimeter is)
:perlm (units and the area is) :a (square units))
PR •
PR [Press RETURN key to continue)
MAKE •waiting READLISTCC
CG
PR •
PR [To look at the snowflake of any level greater than 1 type
in SNOWFLAKE followed by the level required (e.g. SNOWFLAKE 3)
then press RETURN key)
END

Tri, No. Sides, Perimeter and Area are the procedures used to generate
the graphic, and formulae for the number of sides, perimeter and area respectively. Tri
used a subprocedure SF.

TO Tri :side :level
IF :level - 0 [STOP]
REPEAT 3 [SF :side :level RT 120)
END

(Audrey's Comment: Repeats SF to draw a complete snowflake)

TO SF :side :level
IF :level - 0 [FD :side STOP]
SF :side I 3 :level - 1
LT 60
SF :side I 3 :level - 1
RT 120
SF :side I 3 :level - 1
LT 60
SF :side I 3 :level - l
END

(Audrey's Comment: SF breaks down :side and :level to smallest possible values
then draws one side of snowflake relating to :level. For simplicity, :side was
given a set value)

The setting of the :side value was also a response to the limitations of the
Logo Writer screen.

TO NO.Sides :level
MAKE •ns (3 • Power 4 :level)
END

TO Side.Length :level
MAKE •sl (l I Power 3 :level)
END

TO Perimeter :level
MAKE •perim ((Power 4 :level) I (Power 3 (:level - l)))
END

TO Area :level
MAKE •a (((1 I 3) • (1 - Power 4 I 9 :level))

I (l - (4 I 9) l l + 1
END

POALLVol6No3 Page4

These procedures were then incorporated into the general case for a
snowflake of any level.

TO Snowflake :level
CG CT HT
PU SETPOS [-50 -80] PD
Tri 90 :level
No.sides :level
Side.Length :level
Perimeter :level
Area :level
PR (SE [on a snowflake of]
1level [levels there are]
:ns [sides, each side being]
:sl [units long, with a total perimeter of]
:perim [units. The overall area of this snowflake is]
:a [square units])
PR [Press RETURN key to continue]
MAKE •waiting READLlSTCC
CG CT HT
PR [To Quit press ESC key, otherwise enter SNOWFLAKE and the
level required]
END

(Audrey's Comment: Snowflake draws the snowflake using user commands for the
level, then calculates number of sides, perimeter, side length and area: and prints them
out on screen) {Editor's Comment: There's a sample snowflake on the front page.}

In order for these formulae to do their job Audrey now identified that she
needed a procedure to calculate indices. She became driven by the need to solve a
perceived Logo mathematical shortfall. She questioned whether she should accept the
challenge of creating a procedure or seek assistance from others.

Other students wanted to join in but Audrey considered (I) she had the
capabilities, and (2) she wanted to make sure that she would be able to 'think and
understand'. Other students added value but Audrey limited their input so as to ensure
that she maintained control of the environment.

(Audrey's Comment: In order to calculate values a Power procedure was necessary.
As Logo Writer did not have this I had to create one. The first attempt was usable only
with the snowflake procedure)

TO SFPower :level
IF :level 1 [STOP]
MAKE "SQ :SQl * :BQ
SFPower :level - 1
END

(Audrey's Comment: For this to work each variable had to be given a value in the
procedure it was used in before it could work. So a new procedure was created which
could be used to support any other procedure, instead of just a snowflake)

TO Power :b :i
MAKE ••resi 1
MAKE "count o
POE :b :i
OP :real
END

POALL Vol 6 No 3 Page 5

TO POE :b : i
IF : i - 0 [Zeroi :b : i]
IF :b - 0 [Zeroi:l :b :i]
u· : i 0 [Neg I :b : i]
IF :count - : i [S'I'OP]
MAKE "reul (: re>Ji .
MAKE "count :count
POE :b : i
END

TO zeroi :b :i
MAKE "resi 1
END

TO Negi :b :i
Neg
Change
END

TO Change
MAKE "post 1 I :resi

:b)
+ 1

MAKE "posti :post • 10000
MAKE "resi (INT :posti) I 10000
END

TO zeroB :b :i
MAKE "resi 0
END

TO Neg
IF :count • :i [STOP]
MAKE "resi :resi * :b
MAKE "count :count - 1
Neg
END

(Audrey's Comment: Neg I uses the same recursion as POE, but when :count : i
the reciprocal is found (negative indices). The computer cannot handle such long
figures, and so the result is multiplied by 10 000 to give a larger integer. Then, using
the INT command the decimal part is discarded and the remainder divided by I 0 000 so
that the final figure has only up to 4 decimal places. The procedure can now by used to
support any other procedure, providing there are no fractional indices!)

In writing Power Audrey had not only created a general procedure of
considerable mathematical force, she had also in the process provided confirmation of
one of Papert's fundamental beliefs- she had established a personal relationship with
the computer to explore new frontiers of knowledge (1980, p 6).within a post-primary
context.

Audrey commented on how much the 'thinking aspect' meant to her. The
computer had become a tool to support her thinking. In her own words most of the
work involved 'thinking away from the computer'. Her reflective comments also
confirm the control she had established over her own thinking.

The value of this project towards the development of Audrey's mathematical
understanding is also noteworthy. As well as direct mathematical application it provided
her with insight into the value of planning, debugging and modular thinking. But much
more, it opened her eyes to wanting to know how something worked. Previously she
had been contented with just understanding its uses. Audrey likened mathematics to the
computer- 'we know how to use it but we don't know how it works'.

When last seen Audrey was exploring logarithms and series approximations in
order to expand her power procedure to cope with non-integer indices.

References
McDougall A. and Adams T. (1983) 'Teaching a Computer to Write Poetry', in

Jnfonnation Tramfer 3(3) p 6-14. Reprinted in Salvas A. (1984) Computers in
Education: 1984 and Beyond, Computer Education Group of Victoria, pp 130-6

Papert S. (1980) Mindstonns: Children, Computers and Poweifulldeas, Great Britain.
Harvester Press.

Thornburg D. D. (1986) Beyond Tunle Graphics- Funher Explorations of Logo
Addison-Wesley

POALL Yol6 No 3 Page 6

The creation of databases using Logo Writer

Jenny Betts, Queensland Sunrise Centre, Coombabah

Introduction

Reporting the progressive steps children undertook in developing a menu for
a Logo database used as a part of Social Studies, is the focus of this

article. It reflects 18 months of observing the children' progression of
endeavouring to develop a user friendly menu which is now used across the

curriculum.

It would be true to say that the development which took place was not a
"true" database as it did not contain what we associate with databases, and

that is fields. These databases can be more closely associated with the
form of "Choose your own path" type books. Nevertheless, even though our

programming methods may seem crude to expert Logo programmers, together the
children and I made some startling discoveries, especially when both the

children and I were very much beginners.

The Original Plan

So often children use software that is already programmed and I almost trapped
myself into believing that this was the road to take with computers in Education
until the day I was introduced to Logo. Commercial software packages have their
value within the class environment, however, I noticed Logo provided children
with another set of experiences. My experiences with Logo had been very little,
in fact I had never drawn the square that everyone seemed to be able to do, due
to avoidance on my part. Shape creating was not the motivating force behind why
I have chosen to use Logo, although I can now see the advantages in doing so.
With the introduction of Logowriter on the market, using Logo has enabled
students to create microworlds' by manipulating not only numbers but also text.
Children have immersed themselves with programming adventure games,
databases (of sorts), crosswords, word games, speed reading programs etc. and
all have related to the class theme at the time. Logo has made it possible for
children to be in control of learning difficult concepts while having fun.

Concentrating on the development of the programming skills is never the main
focus in my class, it is developing skills and accumulating knowledge. In any
event, using Logo not only allows for the development of many logical thinking
processes because of the programming skills involved, but it has also motivated
children, allows for children at all academic levels to achieve and they accumulate
a wealth of knowledge.

I Papert, S. (1980) Mitidstumzs: Children, Computers wid Pu..-eifulldeas (New York: Basic Books)

POALL Vol 6 No 3 Page 7

Problems Faced
BecauSe of the children's limited knowledge of programming, they faced four main
problems. They were;

1. Having easy to follow instructions

2. Having a simple screen arrangement- to include instructions. text and
graphics

3. Accessing Information
• using more than one screen
• menus
• searching

1 • Easy to follo""" :I::n.st:ru.c::tio:n.s

Preconceptions of how instructions should be written were not evident. At first
the childrens' instructions were quite lengthy. Perhaps the lengthy instructions
could have related to the limited knowledge of logo programming or limited
knowledge of how computer programs worked.

(Carl) •••
Type which one.

or
Press the letter that you want

to see ·and you can type q to quit.

A. ARCHITECTURE
B. CLOTIIl NG
C. RELIGION

(Darren) •••
This 1a a program about the romans and
their life style. Choose one of the

following names and type in the letter
beside it in the command centre. To
get back to the database type data

A. ARCHITECTURB
B. CLOTHING
C. RELIGION

Regardless, patience is the key
to meaningful progression.
Allowing the children to
experience the lengthy
instructions is very important,
although at times, it is difficult
not to step in and give advice.
They should be left alone to
create their own instructions.
As we progressed, the children
began to develop procedures that
they shared and refined with
their friends. Discussions were
held on how instructions were
being worded and examples were
shown.

Trying to use more simple
instructions seemed to mean more
to the children after they had
experienced the inconvenience of
more involved instructions.

POALL Vol 6 No 3 Page 8

2 - La yen.:~. t of sc:::reer::a.

Instructions

As each screen of information was shown, it was difficult to read because the
instructions and the information were cramped.

Instructions were often attached to the bottom of the print. This meant that their
position depended on how much information was on the screen. Instructions
therefore, were never found in the same place. Each time a new screen was
given, you had to search for the instructions.

Figure 1 Instructions are not
clearly noticeable

Figure 3 No instructions at all.
In fact you wait.

To oontinur., Push any llry.

Figure 2 Different place
and different instructions

Figure 4 Clear instructions but
once again not consistent with the

rest of the program.

Not all these pages came directly after one another. Notice how the user faces
several different methods of accessing information.

Having the instructions and the information together also meant that less
information was able to be placed on the screen at any one time. It became
apparent that it might be useful to display instructions in a manner where the
user would Always l<now exactly where to look for them and the screen would not
be overcrowded with information and instructions. Using U1e command centre
seemed a great idea and it meant only a slight change to programming. Not only
did the children learn about layout of a page but they now had two more commands

POALL Vol 6 No 3 Page 9

to worlt with - TYPE and SHOW. These have also been used quite extensively.

Original Vers~on Changes

To continue To continue
Pr [Press any key to continue.] Show [Press any key to continue.]
name readlist "any.key name readlist "any.key

end end

3- ..A..c::c::ess.ir:l.g Ir:J.fo:rma:tior:J.

(!) Using more than one screen

(a) Manual

Children were writing more than one screen of information on certain areas and
found themselves having to deal with how the user could get access to all the
information. One method was:-

Print all the text on the screen and then tell the user to;

-press <control>-U to move the cursor to the text centre
- use the arrow the keys to move through the text
-press <control>-D to move the cursor down to the command centre.

How we showed all the text and all these instructions was very difficult but
manageable however , the problem with this method was that there was no way to
return to the main menu. This was not too successful because the instructions
were too long and it was too much for the user to remember.

Encouraging the children to find a way that didn't require the user to know how
to use Logowriter was my role.

(b) Waiting
Another popular method was using the wait command. Some children programmed
the computer to show one screen at a time, using the wait command between
screens.

Eg To egyptian
pr [information]
top
wait 100
nextscreen
wait 100
menu

end

NB: "Information" is the data which you want displayed.

Catering for the slower reader was popular. They found this annoying when they
were testing their programs as they had to wait quite a while before the next
screen appeared.

POALL Vol6 No 3 Page 10

(c) Scrolling

Another method was to display all of the text, go to the top of the page and
program the computer to scroll through the text.

to egyptian
pr [Information]
top
repeat 34 [wait 10 cd]
menu

end

NB: "Information" is the data which you want displayed. The number of repeat
depends on the number of lines in the text.

l d l Controlling

Being in control of the computer rather than letting it control you has been a
priority instilled in the children. When it came to programming, it was still a
matter of making sure the user was in control. I suggested that they should try
and program so that the user can continue when they were ready rather than
having to wait until the computer is ready. Two methods were used.

(i) Continue Tool

to egyptian
pr [Information]
top
continue
next screen
continue
menu

end

Continue is a subprocedure which halts the program until a key is pressed.

To continue
show "Press any key to continue.
name readchar "any.key

end

(ii) Arrow Tool

to arrows
pr [information]
top
show "Use 1 and to view text
show "Press ESC to exit
pause

end

POALL Vol6 No 3 Page 11

Pause is a subprocedure which looks for the arrow and ESC key to be pressed.

to pause
name readchar "cursor
if :cursor • char 27 [menu stop]
if :cursor • "H [cu]
if :cursor • "P [cd]
pause

end

To find the correct ascii characters for key type "show ascii readchar". Press
enter. The computer is now waiting for you to press the key you wish to find the
ascii character for. In this case press ESC and the computer will respond with
the number 27.

To find the symbol for a character type "show readchar" and press •enter". The
computer is now waiting for you to press the key you wish to find the symbol for.
In this case press one of the arrow keys. The computer will respond to this by
showing a space and the capital "H". You must remember that this is a symbol
and not a letter.

CU) Menu

(a) Text Menu

Looking back it seems a minor hurdle but creating a menu was our biggest
breakthrough. Ideas for these procedures were taken from students. books. the
manual and visiting experts. Any new ideas were quickly seized and modified to
suit our purposes.

Writing procedures that would allow the user to select from a menu was not
difficult but our knowledge was very limited. We all started with the simplest
methods we knew and that was

(Nathan) ..••
to startup
rg ht ct
pr [Do you want]
pr []
pr [a. Architecture]
pr (]

pr [b. Lifestyle
pr []
pr [c. Religion]
end

to a
gp "egypt
end

and Furniture]

to b
gp "egyptl
end

to c
gp "egypt2
end

POALL Vol6 No 3 Page 12

This worked quite well until we found, I should say a student found, a tool that
Would be extremely useful for many things other than the uses we now needed.
It was:

(Warwick) ••••
To menu

pr [Choose 1 -
pr [}
pr [1.
pr [2.
pr [3.
choose

end

to choose

Egypt]
Greece]
Rome]

3}

name readchar "choice
if :choice • 1 [egypt]
if :choice • 2 [Greece]
if :choice • 3 [Rome}

end

This was a first major breakthrough. This tool been used in many of their
programs and appears in many different forms. This method has allowed us to
use very simple wording for instructions. For the user, the selection process is
quite simple.

Cbl Turtle Menu using POS

This menu was developed when the children used a commercial game where the
user used the arrow keys to place an arrow next to the requested topic and then
pressed enter. The menu may look like figure 5.

The procedures are:-

to menu
rg ct ht cc
loadtext "menu.txt
loadpic "aenu.pic
setsh 1 at seth 0
pu setpos[-150 40]
choose

end

POALL Vol6 No 3 Page 13

This procedure loads the graphics and
the text. It sets the scene which is
seen in figure 5. The turtle is given
is shape, pointed in the right
di.r:ection and placed in the position
near the first item, "other.options•.

to choose
arrow
alddle?
choose

--------------------------£.

...
SKXMe ME:NU

end Figure 5 Saaple of a Turtle ftenu using
POS

The choose subprocedure makes the
whole menu procedure run.

to arrow
naae readcbar "up.down
if :up.dovn • char 13 (position?]
if :up.down • ~H [fd 10]
if :up.dovn • "P [bk 10]
arrow

end

This procedure checks to see if the up or down arrow is pressed. If so, then the
turtle will move in the correct direction ie if the up arrow key is pressed the
turtle will move forward 10. Finding the symbol for a keyboard character and
ascii character. numbers is explained in the arrow tool.

to 11lddle?
if pos • [-150. 50] [bk 10]
if pos • [-150 -70] [fd 10]

end

This subprocedure checks to see that the turtle does not· move above or below the
top and bottom topics.

to position?
if pos • [-150 40] [other.options]
if pos • [-150 30] [aniaal.11enu]
if pos • [-150 20] [clothing.aenu]
if pos • [-150 10) (food.eaten]
if pos • (-150 0] [history.11enu]
if pos • [-150 -10] [housing.aenu]
if pos • [-150 -201 [group.llfe]
if pos • [-150 -30] (religion.•enu]
if pos • [-150 -40] [social.control]
if pos • [-150 -60] [next.aenu]

end

POJ\LL Vol 6 No J Page 14

VI !len lhe Pnter Jwy is pn~sse<l, the com puler will chPcl< lo see U1r> turtles
posilion. If this is a pos!Uon the lurlle has been pro<jram to respond to the
computet" will run that subprocedure.

This tool was invented by a group of 12 year old boys, vlarwick Mitchell, Tim
:c>chrnidt, Colin Ruscoe and Nathan HawJ<ins. It is Uw most recent discovery and
was developed when the children used a commercial database called PC Globe. It
1s very similar to the way the PC Globe map works.

This graphic has been loaded over the
to[) of a text file which has been
loacled in a the colour 0 so that it
cannot be seen by the user. Each
country or word from the menu has
been assigned a character (Figure 3).
/\.s you move the turtle around the
'"'reen, the turtle checks to see which
clJ<Iracter it is under. It will then
<;hm·; in the command centre the
dppropriate country.

1! you Jool< closely you can see how
Pdch country and menu word has bcc~n
(-!~;~~ignecl u character ..

Figure G Map uplo;Jded fru111 PC Gl.oUe

with modlfJcatJons

Flgur·e 7 Text File which is loaded

underneath the graphic

:;, .L.-

POALL Vol6 No 3 Page 15

The procedures for this are:-

Line 1 to main.menu
Line 2 rg cc ct pu
Line 3 seteh 19
Line 4 settc 0
Line 5 load text "O.txt
Line 6 settc 0
Line 7 load text "as.t.a.t.tt
Line 8 top delete
Line 9 loadpic "asia.pic
Line 10 make "country "China
Line 11 type :country
Line 12 make "color 1
Line 13 tell 1 pu
Line 14 setpos[95 -88]
Line 15 setsh 22 at
Line 16 tell 0 cc
Line 17 aove.aenu
Line 18 end

Loading •o. txt" in line 5, using colour 0 has to be done first so that the computer
will then load the next lot of next in the same colour. Colour 0 has been chosen
because it is clear on the monochrome screen. •o. txt• contains only a "return"
and is deleted in line 8 , after the "asia. txt• is loaded in line 7. The asia. txt is
what you see in figure 3. Line 10 creates a variable, country which will change
according to which character is under the turtle at the time. (see procedure
"fly".) The colour is then changed back to 1 so the user can see what is written.
Line 14 sets the shape of the turtle and in this case it is an arrow, and the
position which is on China. We then move onto the next procedure "move. menu•
which allows the user to move the turtle around the screen

to 1110ve.menu
if key? [menu!]
setc :color
make "color :color + 1
repeat 5 [if key?{menul] wait 11
if :color • 5 [make •color 1)

cc
type :country
move.aenu

end

Warwick allows the colour of the turtle to charlge colour while it is not actually
moving around the screen. In line 1 if a key is pressed, the computer will move
onto the next procedure which is "Menu?"

POALL Vol6 No 3 Page 16

line 1 to menul
line 2 cc type :country
Une 3 name readchar "move
line 4 if :move • char 27 [make "country "Exit]
line 5 if :move • "H [seth 0 fd 5 under]
line 6 1f :move • "P [seth 180 fd 5 under]
line 7 if :move • "M [seth 90 fd 5 under]
line 8 1f :move • "K [seth 270 fd 5 under]
line 9 1f :move • "D [back.menu]
line 10 1f :move • char 13 [enter.menu]
line 11 1f not letter? :move [stop]
line 12 make "country (word :country :move)
line 13 cc type :country
line 14 before?
Line 15 end

This procedure checks for particular keys to be pressed.

Line 4
Line 5
Line6
Line7
LineS
Line 9
Line 10

llne13

ESC key
up arrow key
down arrow key
right arrow key
left arrow key
Backspace
Enter

Depending upon the character under the turtle, a country wW be
shown in the command centre and then the computer will wait for
another key to be pressed.

to letter? :letter
op member? :letter[a b c d e f g h i J k 1 • no p q r s t u v w z y 1 I I]

end

If the user chooses to types the choice in the command centre, the computer will
output the key pressed and show it in the command centre.

to back.menu
if empty? :country [stop]
cc
make "country b1 :country
type :country

end·

The •eack.menu• is included because the user can also type in the command
centre which country or action from the menu they ·wish to pursue. The boys
have included a backspace so if a mistake is made when typing, the user can use
the backspace to delete the mistakes.

POALL Vol6 No 3 Page 17

to under
if charunder = "$ [make "country "Currency)
if charunder • "u [make "country "USSR]
if charunder • "m [make "country "Mongolia]
if charunder • "c [make "country "China]
if charunder • "z [make "country "!Time Zone!]
if charunder • "e [make "country "Indonesia]
if charunder • "s [make "country "!Sri Lanka!]
if charunder • "t [make "country "Thailand]
if charunder • "1 [make "Country "Laos]
if charunder • "v [make "country "Vietnam]
if charunder • "p [make "country "Nepal]
if charunder • "b [make "country "Burma]
if charunder • "a [make "country "Afghanistan]
if charunder • "k [make "country "Pakistan]
if charunder • "@ [make "country "]
if charunder • "h [make "country "I South Korea I]
if charunder • "1 [make "country "Khmer]
if charunder • "n [make "country "!North Korea!]
lf charunder • "i [make "country "India]
if charunder • "j [make "Country "Japan]
lf charunder • [make "country "!Word Search!]
if charunder • "? [make "country "Help]
if charunder • "x [make "country "Exit]
if charunder • "f [make "country "Flag]
if charunder = "o [make "country "Malaysia]
if charunder • "g [make "country "Bangladesh]
if charunder • "2 [make "country "Bhutan]
if charunder "3 [make "Country "Taiwan]
if charunder = "4 [make "country "Phillippines]
if charunder • "5 [make "country "Singapore]

end

The "menu" procedure assigns country a character. When the turtle is under a
letter it recognises it will then make the variable "country the appropriate name.

line 1

line 2

line 3

to enter.menu
if member? :country [Exit Flag Help !Word Search.! !Time Zone!
currency] [run (se :country ")]

if member? :country [Singapore Philippines Taiwan Bhutan
Bangladesh Japan India !North Korea! Khmer !South Korea!
Pakistan Afghanistan Burma Nepal Vietnam Laos Thailand !Sri
Lanka! Malaysia Indonesia China Mongolia USSR] [fly
start.get.info :country stop)

end

POALL Vol6 No 3 Page 18

The ":enter.menu" will be invoked when the enter key is pressed. The computer
will check which country is the :"country variable, check to see if it is a member
of the list of countries available. There are two lists here. Line 2lists the menu
type actions such as Exit, Flags, Help, Word search, time zones and currency.
If the character is matched to one of these it will invoke the procedures which
work that part of the program. Line 3 checks to see if you have the turtle over
a specl.fic country. If it is then the computer will search for the information on
that country and display it.

to fly
if :country • "USSR [if not charunder • "u[setpos(-15 40)]]
if :country • "Mongolia [if not charunder • "m[setpos[-15 10])]
if :country • "China [if not charunder • "c[setpos[-15 -15]]]
if :country • "Indonesia [if not charunder • "e[setpos[20 -75)]]
if :country • "!Sri Lanka! [if not charunder • "s[setpos[-45 -55)]]
if :country • "Thailand [if not charunder • "t[setpos[-15 -45])]
if :country • "Laos [if not charunder • "l[setpos[-13 -40)]]
if :country • "Vietnam [if not,charunder • "v[setpos[-10 -37]]]
if :country • "Nepal [if not charunder • "p[setpos[-45 -26]]]
if :country • "Burma [if not charunder • "b[setpos[-25 -35J]]
if :country • "Afghanistan [if not charunder • "a[setpos[-70 -15]]]
if :country • "Pakistan [if not charunder • "k[setpos[-60 -20]]]
if :country • "!South Korea! [if not charunder • "h[setpos[26 -10)]]
if :country • "Khmer [if not charunder • "1[setpos[-9 -50]]]
if :country • "!North Korea! [if not charunder • "n[setpos[25 -5)]]
if :country • "India [if not charunder • "i[setpos[-55 -30]]]
if :country • "Japan [if not charunder' • "j[setpos[45 -10)]]
if :country • "Malaysia [if not charunder • "o[setpos[4 -65]]]
if :country • "Bangladesh [if not charunder • "g[setpos[-33 -34]])
if :country • "Bhutan [if not charunder • "2(setpos[-33 -29]]]
if :country • "Taiwan [if not charunder • "3[setpos[l7 -34]]]
if :country • "Phillippines [if not charunder • "4[setpos[i7 -49]]]
if :country • "Singapore [if not charunder • "S[setpos[-15 -60]]]
make "pos pos
tell 1
seth towards :pos
repeat distance :pos (fd 1 if key? (stop) wait 1]
tone 1000 5

end

This is a little extra animation. When a country is selected, a plane flies to that
country selected.

(III l Searching

TO BE DONE

POALL Vol6 No 3 Page 19

Summary
Most problems encountered, such us lengthy instructions, crowded screens,
difficulties with selecting topics and difficulties with accessing information, have
all been overcome by improving our programming skills.

You can give children 101 tools with which to work before you start programming
but they will not know the true usefulness of them until they have the need to use
something similar. They then begin to see the need to enhance their ideas. The
key is to be patient and introduce each tool as it is needed or discovered by the
children. It seemed that, when the children were given a few tools with which to
work, they seemed to work harder. We were always searching for solutions to
problems, and I think this is what made programming databases exciting.

Developing programming skills is not the main focus, nor is it the developing of
a database. It is the actual research skills and the knowledge gained as the
children develop the other two areas.

We have come a long way from the first attempts of programming. Although we
still have not reached a "true" database form, the most important element is that
the children have gained a great deal of knowledge, developed academic skills
(such as researching, note taking and communicative writing skills) acquired
social skills and developed thinking processes, all of which are objectives of the
current Queensland Social Studies Syllabus. !)'

The Screen as Data

The fact that the screen can be used to store information. rather than use
assignment _(ie. MAKE) is one of Logo Writer's neat features, and used to advantage by
Warw1ck Mitchell.

There are a couple of other ways of setting it up, for instance, the invisible text
can be part o_f a page, along with the graphics and procedures, instead of being loaded
separately.lo make such a page, put the text in place visibly, then top select
bottom settc 0 will hide it before the page is saved. Be aware that getpage will
be slower than separately loading graphics and text.

. . For loadin~ transparent text separately we can avoid the extra file by simply
pnntmg the blank lme:

Ct
pr •
settc o
loadtext •whatever
top delete

make sure screen is clear
print a blank line
set transparent text colour
load the text
delete the carriage return at the top

A C.o '?~ F/<>-vy>~co.k
(,~ .-..ud ~6,

POALL Vol6 No 3 Page 20

Computing at Entropy -m
Many thanks to Pam Gibbons who kindly sent a C-64 LogoWriter disk to

Oakbank Area School. Next problem is the difference between the graphics of North
American and Australian C-64s. Anyone know the fix?

POALL has managed to score a minor victory over the bureacrazy. The bank
account 'has been approved and certified as exempt in accordance with exemption 4
Second Schedule Stamp Duties Act, 1923.'

Try these:
• (a) In which year was the first spreadsheet developed?
(b) What was the name of this first spreadsheet?
(c) By whom was this first spreadsheet developed?
(d) For which brand of computer was this first spreadsheet designed'

From a trivia game? No, from an information technology workbook. Profound.
Anyone remember the TI-99/4A?

Spent a week last term writing a sample program for the SACE Computing
Studies book, and found it an irritating and frustrating business trying to formalise
what I want to be spontaneous and open-ended. I only hope the formality doesn't
ex tend to Stage -1 etc.

SACE is already distorting the language. Compare these dictionary
definitions ...
approve: confrrm, sanction, pronounce or consider satisfactory or good, agree to
endorse: confirm, declare one's approval of
... with SACE parlance:
endorse: 'I've seen this LSACE Stage 1 Program] but haven't a clue what it's about,
be it on your own head.'

This year's Scientific American special, the September issue, is entitled
'Communications, Computers and Networks.' The latest ideas by Larry Tesler, Vinton
Cerf, Nicholas Negroponte, et al. There's a vintage piece, 'Computers, Networks and
Education' by Alan Kay. Buy a copy.

Did you see the program 'Signs of Life' in the Discovery series on ABC-TV on
November 14th? If you didn't, track down someone who taped it. Artificial life,
cellular automata (Ltfe), emergent behaviour and that sort of thing. Featured were
W. Danny Hillis (designer of the Connection Machine) and Bill Gosper (the
Flow Snake fractal). Try it all for yourself with The Phantom Fish tank (Apple or MS­
DOS) by one-time fellow student of Hillis, Brian Silverman.

The Bug Stops Here

The SACE Developing a Stage 1 Computing Teaching Program book contains
at least one error in a Logo procedure, and there's another that can be cleaned up. On
page 136 there's a line missing from Lead. It should be:

TO Lead :speed
IF KEY? [Command]
FD :speed
Lead :speed

(If you'd like a copy of the procedures from pages 135 .. 142 of the book, in Mac,
ProDOS or MS-DOS format, send a blank disk to POALL with SA E.)

At the bottom of page 56 you can shorten the line in Questions by changing
it to: RUN ITEM :choice [[No Turn] [No Start] [Stalls] [uns stalls]

[Spark Plugs] [Finish STOP]] -
Questions -
END

